Numerical simulation of hybrid ventilation for underground subway depot with superstructures

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY International Journal of Ventilation Pub Date : 2020-10-01 DOI:10.1080/14733315.2019.1687178
Zhilei Wang, Xinxin Guo, Xuhai Pan, Li Zhu, Juan Yang, M. Hua, Juncheng Jiang
{"title":"Numerical simulation of hybrid ventilation for underground subway depot with superstructures","authors":"Zhilei Wang, Xinxin Guo, Xuhai Pan, Li Zhu, Juan Yang, M. Hua, Juncheng Jiang","doi":"10.1080/14733315.2019.1687178","DOIUrl":null,"url":null,"abstract":"Abstract This study proposed a hybrid ventilation mode for underground subway depot with superstructures and described the construction of a calculation model for estimating the smoke-exhaust efficiency of ventilation systems in such buildings. The hybrid ventilation system consisted of natural ventilation, a flow deflector, and mechanical fans. The smoke-layer height, smoke temperature, gas-flow routes, and velocity distribution under the ceiling were recorded, and the smoke-exhaust efficiencies of the three ventilation modes were calculated and compared. The results revealed a lower ceiling temperature in hybrid ventilation than in mechanical ventilation or natural ventilation systems, with no smoke accumulation in the bottom layer or interlayer. Therefore, the thickness and stability of the smoke layer was determined to be more desirable in hybrid ventilation than in the other two ventilation systems. Gas-flow routes demonstrated that air from outside flowed in through the side window along the ceiling of the bottom layer to the exhaust fan. The dispersion of hot smoke was thus impeded, and smoke was entrained into the fan. The smoke-exhaust efficiencies of hybrid ventilation and mechanical ventilation systems were similar, and both were higher than that of natural ventilation.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":"40 1","pages":"280 - 299"},"PeriodicalIF":1.1000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2019.1687178","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract This study proposed a hybrid ventilation mode for underground subway depot with superstructures and described the construction of a calculation model for estimating the smoke-exhaust efficiency of ventilation systems in such buildings. The hybrid ventilation system consisted of natural ventilation, a flow deflector, and mechanical fans. The smoke-layer height, smoke temperature, gas-flow routes, and velocity distribution under the ceiling were recorded, and the smoke-exhaust efficiencies of the three ventilation modes were calculated and compared. The results revealed a lower ceiling temperature in hybrid ventilation than in mechanical ventilation or natural ventilation systems, with no smoke accumulation in the bottom layer or interlayer. Therefore, the thickness and stability of the smoke layer was determined to be more desirable in hybrid ventilation than in the other two ventilation systems. Gas-flow routes demonstrated that air from outside flowed in through the side window along the ceiling of the bottom layer to the exhaust fan. The dispersion of hot smoke was thus impeded, and smoke was entrained into the fan. The smoke-exhaust efficiencies of hybrid ventilation and mechanical ventilation systems were similar, and both were higher than that of natural ventilation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含上部结构地下地铁车辆段混合通风数值模拟
摘要本文提出了一种带有上层建筑的地下地铁车场混合通风模式,并建立了该建筑通风系统排烟效率的计算模型。混合通风系统由自然通风、导流板和机械风扇组成。记录顶板下的烟层高度、烟温、气流路径和速度分布,计算并比较三种通风方式的排烟效率。结果表明,混合通风系统的顶棚温度低于机械通风和自然通风系统,底层和中间层均无烟尘积聚。因此,确定了混合通风比其他两种通风系统更理想的烟层厚度和稳定性。气体流动路线表明,空气从外部流经侧窗沿天花板的底层排风机。热烟的扩散因此受到阻碍,烟雾被带入风扇。混合通风与机械通风的排烟效率相似,均高于自然通风。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Ventilation
International Journal of Ventilation CONSTRUCTION & BUILDING TECHNOLOGY-ENERGY & FUELS
CiteScore
3.50
自引率
6.70%
发文量
7
审稿时长
>12 weeks
期刊介绍: This is a peer reviewed journal aimed at providing the latest information on research and application. Topics include: • New ideas concerned with the development or application of ventilation; • Validated case studies demonstrating the performance of ventilation strategies; • Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc; • Developments in numerical methods; • Measurement techniques; • Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort); • Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss); • Driving forces (weather data, fan performance etc).
期刊最新文献
Assessing thermal resilience to overheating in a Belgian apartment: impact of building parameters Passive ventilation for building not subjected to solar radiation Experimental study on the periodic pulsating ventilation by fluidic oscillator on pollutant dispersion and ventilation performance in enclosed environment Compartmentalization and ventilation system impacts on air and contaminant transport for multifamily buildings Controllable baffle-type exhaust-hood in home kitchen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1