Ginger Ren, A. Sanders, Dawn M. Friesen, B. Seymour
{"title":"Understanding the Impact of Condensate Composition on Performance of Gas Well Deliquification Surfactants","authors":"Ginger Ren, A. Sanders, Dawn M. Friesen, B. Seymour","doi":"10.2118/192142-MS","DOIUrl":null,"url":null,"abstract":"\n Surfactants are used in gas well deliquification to generate foam to lift liquid condensates and brine from a well during gas production. In this paper, the effect of various hydrocarbon components typically found in natural condensates on selected foaming surfactants was studied.\n The screening methodology used a modified blender test to evaluate foam height and its half-life. The foaming results from the blender tests are reported for a number of alpha olefin sulfonates (AOS), alkyl ether sulfates (AES), and betaines at 25°C and ambient pressure. The surfactants were also evaluated using dynamic foam carry-over apparatus at ambient conditions for further validation.\n This work helps to elucidate problems associated with choosing the proper gas well deliquification surfactant suitable for a condensate of a specific composition.","PeriodicalId":11182,"journal":{"name":"Day 3 Thu, October 25, 2018","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, October 25, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/192142-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Surfactants are used in gas well deliquification to generate foam to lift liquid condensates and brine from a well during gas production. In this paper, the effect of various hydrocarbon components typically found in natural condensates on selected foaming surfactants was studied.
The screening methodology used a modified blender test to evaluate foam height and its half-life. The foaming results from the blender tests are reported for a number of alpha olefin sulfonates (AOS), alkyl ether sulfates (AES), and betaines at 25°C and ambient pressure. The surfactants were also evaluated using dynamic foam carry-over apparatus at ambient conditions for further validation.
This work helps to elucidate problems associated with choosing the proper gas well deliquification surfactant suitable for a condensate of a specific composition.