Bi-Objective Crop Mapping from Sentinel-2 Images Based on Multiple Deep Learning Networks

Remote. Sens. Pub Date : 2023-07-06 DOI:10.3390/rs15133417
Weicheng Song, Aiqing Feng, Guojie Wang, Qixia Zhang, Wen Dai, Xikun Wei, Yifan Hu, S. Amankwah, Feihong Zhou, Yi Liu
{"title":"Bi-Objective Crop Mapping from Sentinel-2 Images Based on Multiple Deep Learning Networks","authors":"Weicheng Song, Aiqing Feng, Guojie Wang, Qixia Zhang, Wen Dai, Xikun Wei, Yifan Hu, S. Amankwah, Feihong Zhou, Yi Liu","doi":"10.3390/rs15133417","DOIUrl":null,"url":null,"abstract":"Accurate assessment of the extent of crop distribution and mapping different crop types are essential for monitoring and managing modern agriculture. Medium and high spatial resolution remote sensing (RS) for Earth observation and deep learning (DL) constitute one of the most major and effective tools for crop mapping. In this study, we used high-resolution Sentinel-2 imagery from Google Earth Engine (GEE) to map paddy rice and winter wheat in the Bengbu city of Anhui Province, China. We compared the performance of different popular DL backbone networks with the traditional machine learning (ML) methods, including HRNet, MobileNet, Xception, and Swin Transformer, within the improved DeepLabv3+ architecture, Segformer and random forest (RF). The results showed that the Segformer based on the combination of the Transformer architecture encoder and the lightweight multilayer perceptron (MLP) decoder achieved an overall accuracy (OA) value of 91.06%, a mean F1 Score (mF1) value of 89.26% and a mean Intersection over Union (mIoU) value of 80.70%. The Segformer outperformed other DL methods by combining the results of multiple evaluation metrics. Except for Swin Transformer, which was slightly lower than RF in OA, all DL methods significantly outperformed RF methods in accuracy for the main mapping objects, with mIoU improving by about 13.5~26%. The predicted images of paddy rice and winter wheat from the Segformer were characterized by high mapping accuracy, clear field edges, distinct detail features and a low false classification rate. Consequently, DL is an efficient option for fast and accurate mapping of paddy rice and winter wheat based on RS imagery.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":"80 1","pages":"3417"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Accurate assessment of the extent of crop distribution and mapping different crop types are essential for monitoring and managing modern agriculture. Medium and high spatial resolution remote sensing (RS) for Earth observation and deep learning (DL) constitute one of the most major and effective tools for crop mapping. In this study, we used high-resolution Sentinel-2 imagery from Google Earth Engine (GEE) to map paddy rice and winter wheat in the Bengbu city of Anhui Province, China. We compared the performance of different popular DL backbone networks with the traditional machine learning (ML) methods, including HRNet, MobileNet, Xception, and Swin Transformer, within the improved DeepLabv3+ architecture, Segformer and random forest (RF). The results showed that the Segformer based on the combination of the Transformer architecture encoder and the lightweight multilayer perceptron (MLP) decoder achieved an overall accuracy (OA) value of 91.06%, a mean F1 Score (mF1) value of 89.26% and a mean Intersection over Union (mIoU) value of 80.70%. The Segformer outperformed other DL methods by combining the results of multiple evaluation metrics. Except for Swin Transformer, which was slightly lower than RF in OA, all DL methods significantly outperformed RF methods in accuracy for the main mapping objects, with mIoU improving by about 13.5~26%. The predicted images of paddy rice and winter wheat from the Segformer were characterized by high mapping accuracy, clear field edges, distinct detail features and a low false classification rate. Consequently, DL is an efficient option for fast and accurate mapping of paddy rice and winter wheat based on RS imagery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多个深度学习网络的Sentinel-2图像双目标作物映射
准确评估作物分布范围和绘制不同作物类型的地图对于监测和管理现代农业至关重要。中、高空间分辨率遥感(RS)对地观测和深度学习(DL)是作物制图最主要、最有效的工具之一。在这项研究中,我们使用来自Google Earth Engine (GEE)的高分辨率Sentinel-2图像对中国安徽省蚌埠市的水稻和冬小麦进行了绘制。我们在改进的DeepLabv3+架构、Segformer和随机森林(RF)中比较了不同流行的深度学习骨干网络与传统机器学习(ML)方法的性能,包括HRNet、MobileNet、Xception和Swin Transformer。结果表明,基于Transformer架构编码器和轻量级多层感知器(MLP)解码器组合的Segformer总体精度(OA)值为91.06%,平均F1 Score (mF1)值为89.26%,平均Intersection over Union (mIoU)值为80.70%。Segformer通过结合多个评估指标的结果优于其他深度学习方法。除Swin Transformer在OA中略低于RF外,所有DL方法在主要映射对象的精度上均显著优于RF方法,mIoU提高约13.5~26%。利用Segformer预测的水稻和冬小麦图像具有成图精度高、田边清晰、细节特征鲜明、误分类率低等特点。因此,深度学习是一种基于遥感影像快速准确定位水稻和冬小麦的有效选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influences of Different Factors on Gravity Wave Activity in the Lower Stratosphere of the Indian Region Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification The Expanding of Proglacial Lake Amplified the Frontal Ablation of Jiongpu Co Glacier since 1985 Investigation of Light-Scattering Properties of Non-Spherical Sea Salt Aerosol Particles at Varying Levels of Relative Humidity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1