Model Predictive Control of parametric excited pitch-surge modes in wave energy converters

Shangyan Zou , Ossama Abdelkhalik , Rush Robinett , Umesh Korde , Giorgio Bacelli , David Wilson , Ryan Coe
{"title":"Model Predictive Control of parametric excited pitch-surge modes in wave energy converters","authors":"Shangyan Zou ,&nbsp;Ossama Abdelkhalik ,&nbsp;Rush Robinett ,&nbsp;Umesh Korde ,&nbsp;Giorgio Bacelli ,&nbsp;David Wilson ,&nbsp;Ryan Coe","doi":"10.1016/j.ijome.2017.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>For a heave-pitch-surge three-degrees-of-freedom wave energy converter, the heave mode is usually decoupled from the pitch-surge modes for small motions. The pitch-surge modes are usually coupled and are parametrically excited by the heave mode, depending on the buoy geometry. In this paper, a Model Predictive Control is applied to the parametric excited pitch-surge motion, while the heave motion is optimized independently. The optimality conditions are derived, and a gradient-based numerical optimization algorithm is used to search for the optimal control. Numerical tests are conducted for regular and Bretschneider waves. The results demonstrate that the proposed control can be implemented to harvest more than three times the energy that can be harvested using a heave-only wave energy converter. The energy harvested using a parametrically excited model is higher than that is harvested when using a linear model.</p></div>","PeriodicalId":100705,"journal":{"name":"International Journal of Marine Energy","volume":"19 ","pages":"Pages 32-46"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ijome.2017.05.002","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Marine Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214166917300504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

For a heave-pitch-surge three-degrees-of-freedom wave energy converter, the heave mode is usually decoupled from the pitch-surge modes for small motions. The pitch-surge modes are usually coupled and are parametrically excited by the heave mode, depending on the buoy geometry. In this paper, a Model Predictive Control is applied to the parametric excited pitch-surge motion, while the heave motion is optimized independently. The optimality conditions are derived, and a gradient-based numerical optimization algorithm is used to search for the optimal control. Numerical tests are conducted for regular and Bretschneider waves. The results demonstrate that the proposed control can be implemented to harvest more than three times the energy that can be harvested using a heave-only wave energy converter. The energy harvested using a parametrically excited model is higher than that is harvested when using a linear model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
波浪能变换器参数激振俯仰浪涌模式的模型预测控制
对于三自由度波浪能变换器来说,对于小运动,波浪模态通常与波浪模态解耦。根据浮标的几何形状,纵摇模式通常是耦合的,并且由升沉模式参数化地激发。本文采用模型预测控制方法对参数激振纵摇运动进行控制,对升沉运动进行独立优化。推导了最优性条件,并采用基于梯度的数值优化算法搜索最优控制。对规则波和布列施耐德波进行了数值试验。结果表明,所提出的控制可以实现捕获的能量是仅使用升沉波能量转换器所能捕获的能量的三倍以上。使用参数激励模型所获得的能量高于使用线性模型所获得的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Physical scale model testing of a flexible membrane wave energy converter: Videogrammetric analysis of membrane operation A comparison of control strategies for wave energy converters Predicted power performance of a submerged membrane pressure-differential wave energy converter Ocean power technology design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1