O. Kanunnikova, V. Aksenova, B. Pushkarev, V. Ladyanov
{"title":"Peculiarities of zinc coating corrosion in neutral environments with inhibitors based on benzotriazole, cyclohexylamine and morpholine","authors":"O. Kanunnikova, V. Aksenova, B. Pushkarev, V. Ladyanov","doi":"10.17073/0021-3438-2019-3-55-67","DOIUrl":null,"url":null,"abstract":"The influence of domestic VNKh-L type nitrogen-containing corrosion inhibitors on the corrosion patterns of zinc coating on steel in a neutral environment was investigated. The paper aims to study the structure of the corroding zinc coating surface, as well as the influence of conditions simulating the degradation of inhibitors under actual application conditions on their protective properties. Mechanical activation in a ball planetary mill was used to simulate the thermal and deformation conditions of inhibitors. Zinc coating corrosion on steel was carried out in a sulfate-chloride environment simulating atmospheric corrosion and in borate buffer solution. The concentration of inhibitors in corrosion environments was 0,2 wt.%. The corroded surface morphology of the zinc coating was studied using the Philips SEM-515 scanning electron microscope (at an accelerating voltage of 10 kV) with an X-ray micro probe. Studies of the zinc coating corrosion rate on St 08 were carried out by the indirect measurement of corrosion resistance using the MONIKOR-1 corrosion meter. Borate buffer solution (Na2B4O7 + H3BO3, pH = 6,6) and the solution simulating atmospheric corrosion (NaCl + + Na2SO4, pH = 6,0) were used as corrosive environments. The corrosion rate of samples in corrosive environments without inhibitors was taken as 1. Exposure time of each sample in corrosive environments was 3 h. The chemical composition of corrosion products was studied by mirror reflection in the IR range. The IR spectra of metal plate surfaces were recorded on the FSM-1202 IR Fourier spectrometer in a wavelength range of 450–4000 cm–1 with a resolution of 2 cm–1 and an accumulation of 100 scans. A mirror reflection attachment with a 10° angle of incidence was used to obtain reflection spectra. The zinc coating corrosion rate in sulfate-chloride and borate environments in the presence of inhibitors based on benzotriazole and cyclohexylamine was virtually not reduced compared to the corrosion rate in the same environments without inhibitors. When both initial and mechanically activated inhibitors based on morpholine and benzotriazole are added to the corrosion environment, the iron corrosion rate decreases compared to the corrosion rate in the same environments without inhibitors. In the presence of initial and mechanically activated inhibitors of both groups, pitting corrosion of the zinc coating in the studied corrosion environments is observed. At the same time, the pitting depth under corrosion conditions is less than the zinc coating thickness.","PeriodicalId":14523,"journal":{"name":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0021-3438-2019-3-55-67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of domestic VNKh-L type nitrogen-containing corrosion inhibitors on the corrosion patterns of zinc coating on steel in a neutral environment was investigated. The paper aims to study the structure of the corroding zinc coating surface, as well as the influence of conditions simulating the degradation of inhibitors under actual application conditions on their protective properties. Mechanical activation in a ball planetary mill was used to simulate the thermal and deformation conditions of inhibitors. Zinc coating corrosion on steel was carried out in a sulfate-chloride environment simulating atmospheric corrosion and in borate buffer solution. The concentration of inhibitors in corrosion environments was 0,2 wt.%. The corroded surface morphology of the zinc coating was studied using the Philips SEM-515 scanning electron microscope (at an accelerating voltage of 10 kV) with an X-ray micro probe. Studies of the zinc coating corrosion rate on St 08 were carried out by the indirect measurement of corrosion resistance using the MONIKOR-1 corrosion meter. Borate buffer solution (Na2B4O7 + H3BO3, pH = 6,6) and the solution simulating atmospheric corrosion (NaCl + + Na2SO4, pH = 6,0) were used as corrosive environments. The corrosion rate of samples in corrosive environments without inhibitors was taken as 1. Exposure time of each sample in corrosive environments was 3 h. The chemical composition of corrosion products was studied by mirror reflection in the IR range. The IR spectra of metal plate surfaces were recorded on the FSM-1202 IR Fourier spectrometer in a wavelength range of 450–4000 cm–1 with a resolution of 2 cm–1 and an accumulation of 100 scans. A mirror reflection attachment with a 10° angle of incidence was used to obtain reflection spectra. The zinc coating corrosion rate in sulfate-chloride and borate environments in the presence of inhibitors based on benzotriazole and cyclohexylamine was virtually not reduced compared to the corrosion rate in the same environments without inhibitors. When both initial and mechanically activated inhibitors based on morpholine and benzotriazole are added to the corrosion environment, the iron corrosion rate decreases compared to the corrosion rate in the same environments without inhibitors. In the presence of initial and mechanically activated inhibitors of both groups, pitting corrosion of the zinc coating in the studied corrosion environments is observed. At the same time, the pitting depth under corrosion conditions is less than the zinc coating thickness.