Pessimistic optimisation for modelling microbial communities with uncertainty

Meltem Apaydin, Liang Xu, Bo Zeng, Xiaoning Qian
{"title":"Pessimistic optimisation for modelling microbial communities with uncertainty","authors":"Meltem Apaydin, Liang Xu, Bo Zeng, Xiaoning Qian","doi":"10.1504/ijcbdd.2020.10026781","DOIUrl":null,"url":null,"abstract":"Optimisation-based mathematical models provide ways to analyse and obtain predictions on microbial communities who play critical roles in the ecological system, human health and diseases. However, there are inherent model and data uncertainties from the existing knowledge and experiments so that the imposed models may not exactly reflect the reality in nature. Here, we aim to have a flexible framework to model microbial communities with uncertainty, and introduce P-OptCom, an extension of an existing method OptCom, based on pessimistic bilevel optimisation. This framework relies on the coordinated decision making between the single upper-level and multiple lower-level decision makers to better approximate community steady states even when the individual microorganisms' behavior deviate from the optimum in terms of their cellular fitness criteria. Our study demonstrates that without experimental knowledge in advance, we are able to analyse the trade-offs among the members of microbial communities and closely approximate the actual experimental measurements.","PeriodicalId":13612,"journal":{"name":"Int. J. Comput. Biol. Drug Des.","volume":"36 1","pages":"82-97"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Biol. Drug Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcbdd.2020.10026781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimisation-based mathematical models provide ways to analyse and obtain predictions on microbial communities who play critical roles in the ecological system, human health and diseases. However, there are inherent model and data uncertainties from the existing knowledge and experiments so that the imposed models may not exactly reflect the reality in nature. Here, we aim to have a flexible framework to model microbial communities with uncertainty, and introduce P-OptCom, an extension of an existing method OptCom, based on pessimistic bilevel optimisation. This framework relies on the coordinated decision making between the single upper-level and multiple lower-level decision makers to better approximate community steady states even when the individual microorganisms' behavior deviate from the optimum in terms of their cellular fitness criteria. Our study demonstrates that without experimental knowledge in advance, we are able to analyse the trade-offs among the members of microbial communities and closely approximate the actual experimental measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有不确定性的微生物群落模型的悲观优化
基于优化的数学模型提供了分析和获得微生物群落预测的方法,微生物群落在生态系统、人类健康和疾病中发挥着关键作用。然而,从现有的知识和实验中,存在固有的模型和数据的不确定性,因此强加的模型可能不能准确地反映自然界的现实。在这里,我们的目标是建立一个灵活的框架来模拟具有不确定性的微生物群落,并引入P-OptCom,这是基于悲观双层优化的现有方法OptCom的扩展。该框架依赖于单个上层决策者和多个下层决策者之间的协调决策,即使在个体微生物的行为偏离其细胞适应度标准的最佳状态时,也能更好地近似群落稳态。我们的研究表明,在没有事先的实验知识的情况下,我们能够分析微生物群落成员之间的权衡,并接近实际的实验测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Random forest with SMOTE and ensemble feature selection for cervical cancer diagnosis A review on speech organ diseases and cancer detection using artificial intelligence In silico phytochemical repurposing of natural molecules as entry inhibitors against RBD of the spike protein of SARS-CoV-2 using molecular docking studies Generation of 2D-QSAR and pharmacophore models for fishing better anti-leishmanial therapeutics Computational identification of personal genetic variants in an identical twin sisters' family
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1