Automatic 3D left ventricular border detection using active appearance models

K. Leung, M. van Stralen, G. van Burken, A. V. D. van der Steen, N. de Jong, J. Bosch
{"title":"Automatic 3D left ventricular border detection using active appearance models","authors":"K. Leung, M. van Stralen, G. van Burken, A. V. D. van der Steen, N. de Jong, J. Bosch","doi":"10.1109/ULTSYM.2010.5935446","DOIUrl":null,"url":null,"abstract":"A fully automated segmentation for 3D echocardiography (3DE) using 3D Active Appearance Models (AAM) was developed and evaluated on end-diastolic (ED) and end-systolic (ES) images of 99 patients. The method used ultrasound specific grey value normalization and employed both regular matching and jacobian tuning. The 3D AAM detected the endocardial contours accurately, even in the presence of large variations in left ventricular appearance and shape. Matching was successful in 87% of patients and resulted in good median point-to-surface errors of 2.65 mm for ED and 3.21 for ES, and good volume regressions (ED: y = −3.2 +1.01×, r=0.95; ES: y = −4.6 +1.01×, r=0.92). Results show that fully automated AAM analysis is practically feasible in 3DE datasets of mixed origin and quality.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":"10 1","pages":"197-200"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2010.5935446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A fully automated segmentation for 3D echocardiography (3DE) using 3D Active Appearance Models (AAM) was developed and evaluated on end-diastolic (ED) and end-systolic (ES) images of 99 patients. The method used ultrasound specific grey value normalization and employed both regular matching and jacobian tuning. The 3D AAM detected the endocardial contours accurately, even in the presence of large variations in left ventricular appearance and shape. Matching was successful in 87% of patients and resulted in good median point-to-surface errors of 2.65 mm for ED and 3.21 for ES, and good volume regressions (ED: y = −3.2 +1.01×, r=0.95; ES: y = −4.6 +1.01×, r=0.92). Results show that fully automated AAM analysis is practically feasible in 3DE datasets of mixed origin and quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用主动外观模型自动3D左心室边界检测
利用3D活动外观模型(AAM)开发了3D超声心动图(3DE)的全自动分割方法,并对99例患者的舒张末期(ED)和收缩末期(ES)图像进行了评估。该方法采用超声特异灰度值归一化,同时采用正则匹配和雅可比调谐。即使在左心室外观和形状存在较大变化的情况下,3D AAM也能准确地检测心内膜轮廓。87%的患者匹配成功,ED的中位点面误差为2.65 mm, ES为3.21 mm,体积回归良好(ED: y = - 3.2 +1.01 x, r=0.95;ES: y = - 4.6 +1.01 x, r=0.92)。结果表明,在混合来源和质量的3DE数据集上,全自动AAM分析是切实可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined use of iteration, quadratic interpolation and an extra kernel for high-resolution 2D particle tracking: A first evaluation Comparing tumor response to VEGF blockade therapy using high frequency ultrasound imaging with size-selected microbubble contrast agents A comparative study of optimal fundamental, second- and superharmonic imaging Evaluation for the distribution of fouling deposition on the microfiltration membrane using high frequency ultrasound A matrix phased array system for 3D high frame-rate imaging of the carotid arteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1