Understanding Acoustic Communication in Plants

V. Dalal
{"title":"Understanding Acoustic Communication in Plants","authors":"V. Dalal","doi":"10.37871/jbres1314","DOIUrl":null,"url":null,"abstract":"Responses of plants to environmental signals have been studied for a long time. These responses are exhibited in the form of morphological and physiological adaptations, and relaying the signal to environment (including other plants) through volatile organic compounds and extrinsic chemicals as well as proteins. However these signals do not correspond to the consciousness in the plants. Recent research in this field has produced evidence of non-physical signals e.g. sound and (electro) magnetic field. Plants produce such signals as well as perceive and respond to these signals. There are many novel techniques that have been used in last three-four decades to understand such signals, mostly acoustic signals. This review summarizes the old knowledge as well as recent developments in the area of generation, perception, integration and processing of acoustic signals by the plants as a response to the environment as well as to communicate among themselves. If understood fully, technological interventions and manipulations of these signals can add an extra tool for crop improvement.","PeriodicalId":94067,"journal":{"name":"Journal of biomedical research & environmental sciences","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical research & environmental sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37871/jbres1314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Responses of plants to environmental signals have been studied for a long time. These responses are exhibited in the form of morphological and physiological adaptations, and relaying the signal to environment (including other plants) through volatile organic compounds and extrinsic chemicals as well as proteins. However these signals do not correspond to the consciousness in the plants. Recent research in this field has produced evidence of non-physical signals e.g. sound and (electro) magnetic field. Plants produce such signals as well as perceive and respond to these signals. There are many novel techniques that have been used in last three-four decades to understand such signals, mostly acoustic signals. This review summarizes the old knowledge as well as recent developments in the area of generation, perception, integration and processing of acoustic signals by the plants as a response to the environment as well as to communicate among themselves. If understood fully, technological interventions and manipulations of these signals can add an extra tool for crop improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解植物的声通信
植物对环境信号的响应已经被研究了很长时间。这些反应以形态和生理适应的形式表现出来,并通过挥发性有机化合物和外源化学物质以及蛋白质将信号传递给环境(包括其他植物)。然而,这些信号并不对应于植物的意识。最近在这一领域的研究已经产生了非物理信号的证据,例如声音和(电)磁场。植物产生这样的信号,并感知和响应这些信号。在过去的三四十年间,有许多新技术被用来理解这些信号,主要是声学信号。本文综述了植物声信号的产生、感知、整合和处理以及它们之间相互通信等方面的旧知识和最新进展。如果充分了解这些信号,技术干预和操作可以为作物改良增加额外的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breastfeeding among Hispanic and Black Women: Barriers and Support. Flood Prevention Raman Spectroscopic Detection of Silicone Leakage in Human Breast and Lymph Node Tissues Characterization and Selection by Optical Absorption and Emission Spectrophotometry of a Series of Red Dyes Capable of Destroying Far UV Rays by Absorption Improving Invasive Breast Cancer Care Using Machine Learning Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1