{"title":"Soil erosion and atmospheric CO2 during the last glacial maximum: the rôle of riverine organic matter fluxes","authors":"W. Ludwig, J. Probst","doi":"10.3402/TELLUSB.V51I2.16267","DOIUrl":null,"url":null,"abstract":"Atmospheric CO 2 is consumed both by organic matter formation and chemical rock weathering, and subsequently discharged as dissolved organic carbon, particulate organic carbon, and dissolved inorganic carbon to the oceans by rivers. In the long term, varying the ratio of the amount of atmospheric CO 2 consumed by continental erosion and the amount of CO 2 released during carbonate precipitation and organic matter respiration in the oceans can change the CO 2 content in the atmosphere. The purpose of this paper is to determine whether riverine organic carbon fluxes during the last glacial maximum (LGM) may have been different from today in order to assess the potential impact on atmospheric CO 2 . Previous studies mainly focused on the role of the river fluxes of inorganic carbon in this respect, but none of them examined possible variations in the fluxes of organic carbon, although the erosion of organic carbon actually represents the bulk of the atmospheric CO 2 consumption by continental erosion. We therefore applied a global carbon erosion model to a LGM scenario in order to determine the riverine fluxes of organic matter during that time. The climatic conditions during the LGM were reconstructed using a computer simulation with a general circulation model. It is found that during the LGM the riverine organic carbon input into the oceans was at least ∼10% lower than today. Most of the reduction of the total organic matter fluxes is due to the reduction of the fluxes of dissolved organic carbon. The fluxes of particulate organic carbon remained almost unchanged. The oceanic response to the lower carbon input was estimated on the basis of a present-day steady state budget for organic river carbon in the oceans, and implies that the reduction of the river fluxes were more than counterbalanced by lower burial rates due to the smaller shelf area during the LGM. This suggests that both the lower river carbon input and the relatively greater share of this carbon being subjected to oceanic respiration, acted as a negative feedback to the low atmospheric CO 2 content during the LGM. DOI: 10.1034/j.1600-0889.1999.t01-1-00003.x","PeriodicalId":54432,"journal":{"name":"Tellus Series B-Chemical and Physical Meteorology","volume":"1 1","pages":"156-164"},"PeriodicalIF":2.3000,"publicationDate":"1999-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus Series B-Chemical and Physical Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3402/TELLUSB.V51I2.16267","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 6
Abstract
Atmospheric CO 2 is consumed both by organic matter formation and chemical rock weathering, and subsequently discharged as dissolved organic carbon, particulate organic carbon, and dissolved inorganic carbon to the oceans by rivers. In the long term, varying the ratio of the amount of atmospheric CO 2 consumed by continental erosion and the amount of CO 2 released during carbonate precipitation and organic matter respiration in the oceans can change the CO 2 content in the atmosphere. The purpose of this paper is to determine whether riverine organic carbon fluxes during the last glacial maximum (LGM) may have been different from today in order to assess the potential impact on atmospheric CO 2 . Previous studies mainly focused on the role of the river fluxes of inorganic carbon in this respect, but none of them examined possible variations in the fluxes of organic carbon, although the erosion of organic carbon actually represents the bulk of the atmospheric CO 2 consumption by continental erosion. We therefore applied a global carbon erosion model to a LGM scenario in order to determine the riverine fluxes of organic matter during that time. The climatic conditions during the LGM were reconstructed using a computer simulation with a general circulation model. It is found that during the LGM the riverine organic carbon input into the oceans was at least ∼10% lower than today. Most of the reduction of the total organic matter fluxes is due to the reduction of the fluxes of dissolved organic carbon. The fluxes of particulate organic carbon remained almost unchanged. The oceanic response to the lower carbon input was estimated on the basis of a present-day steady state budget for organic river carbon in the oceans, and implies that the reduction of the river fluxes were more than counterbalanced by lower burial rates due to the smaller shelf area during the LGM. This suggests that both the lower river carbon input and the relatively greater share of this carbon being subjected to oceanic respiration, acted as a negative feedback to the low atmospheric CO 2 content during the LGM. DOI: 10.1034/j.1600-0889.1999.t01-1-00003.x
期刊介绍:
Tellus B: Chemical and Physical Meteorology along with its sister journal Tellus A: Dynamic Meteorology and Oceanography, are the international, peer-reviewed journals of the International Meteorological Institute in Stockholm, an independent non-for-profit body integrated into the Department of Meteorology at the Faculty of Sciences of Stockholm University, Sweden. Aiming to promote the exchange of knowledge about meteorology from across a range of scientific sub-disciplines, the two journals serve an international community of researchers, policy makers, managers, media and the general public.