{"title":"Exergy analysis of vapor compression refrigeration systems","authors":"Recep Yumrutaş , Mehmet Kunduz , Mehmet Kanoğlu","doi":"10.1016/S1164-0235(02)00079-1","DOIUrl":null,"url":null,"abstract":"<div><p>A computational model based on the exergy analysis is presented for the investigation of the effects of the evaporating and condensing temperatures on the pressure losses, the exergy losses, the second law of efficiency, and the coefficient of performance (COP) of a vapor compression refrigeration cycle. It is found that the evaporating and condensing temperatures have strong effects on the exergy losses in the evaporator and condenser, and on the second law of efficiency and COP of the cycle but little effects on the exergy losses in the compressor and the expansion valve. The second law efficiency and the COP increases, and the total exergy loss decreases with decreasing temperature difference between the evaporator and refrigerated space and between the condenser and outside air.</p></div>","PeriodicalId":100518,"journal":{"name":"Exergy, An International Journal","volume":"2 4","pages":"Pages 266-272"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1164-0235(02)00079-1","citationCount":"205","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exergy, An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164023502000791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 205
Abstract
A computational model based on the exergy analysis is presented for the investigation of the effects of the evaporating and condensing temperatures on the pressure losses, the exergy losses, the second law of efficiency, and the coefficient of performance (COP) of a vapor compression refrigeration cycle. It is found that the evaporating and condensing temperatures have strong effects on the exergy losses in the evaporator and condenser, and on the second law of efficiency and COP of the cycle but little effects on the exergy losses in the compressor and the expansion valve. The second law efficiency and the COP increases, and the total exergy loss decreases with decreasing temperature difference between the evaporator and refrigerated space and between the condenser and outside air.