Shuangxi Liu, B. Yan, Wei Huang, Xu Zhang, Jie Yan
{"title":"Current status and prospects of terminal guidance laws for intercepting hypersonic vehicles in near space: a review","authors":"Shuangxi Liu, B. Yan, Wei Huang, Xu Zhang, Jie Yan","doi":"10.1631/jzus.A2200423","DOIUrl":null,"url":null,"abstract":"临近空间高超声速飞行器是指在临近空间能够以大于5马赫速度飞行的一类飞行器, 具有飞行速度快、 突防能力强、 作战半径大和响应迅速等特点. 凭借其优异的性能优势, 高超声速飞行器逐渐成为各个国家新的空天博弈焦点, 给现有防御体系带来巨大挑战. 为满足临近空间高超声速飞行器防御需求, 本文系统性地梳理高超声速飞行器的“五大优势”及拦截高超声速飞行器的“四大难点”. 其次, 针对现阶段高超声速飞行器拦截制导律, 对基于单弹制导律和多弹协同制导律进行综述, 并归纳其优缺点. 最后, 从“信息域”、 “空间域”、 “物理域”和“效费比”四个方面对协同拦截高超声速飞行器未来发展方向进行了展望, 为临近空间拦截制导技术研究提供参考. The unique performance advantages of hypersonic vehicles represent a critical challenge for existing defense systems. To facilitate defensive operations against hypersonic vehicles in near space, this paper systematically discusses both the advantages of these vehicles and the difficulties in intercepting them. Focusing on the state-of-the-art terminal guidance laws for intercepting hypersonic vehicles in near space, we examine research progress in the area of single- and multi-interceptor cooperative guidance laws and summarize their advantages and disadvantages. We also highlight future research directions for developing an effective terminal guidance law for multi-interceptor cooperative interception of hypersonic vehicles, based on four aspects: the information domain, space domain, physical domain, and effect-cost ratio. The findings provide a reference for further research into near-space interceptor terminal guidance technologies.","PeriodicalId":17508,"journal":{"name":"Journal of Zhejiang University-SCIENCE A","volume":"58 1","pages":"387-403"},"PeriodicalIF":3.3000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-SCIENCE A","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/jzus.A2200423","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
临近空间高超声速飞行器是指在临近空间能够以大于5马赫速度飞行的一类飞行器, 具有飞行速度快、 突防能力强、 作战半径大和响应迅速等特点. 凭借其优异的性能优势, 高超声速飞行器逐渐成为各个国家新的空天博弈焦点, 给现有防御体系带来巨大挑战. 为满足临近空间高超声速飞行器防御需求, 本文系统性地梳理高超声速飞行器的“五大优势”及拦截高超声速飞行器的“四大难点”. 其次, 针对现阶段高超声速飞行器拦截制导律, 对基于单弹制导律和多弹协同制导律进行综述, 并归纳其优缺点. 最后, 从“信息域”、 “空间域”、 “物理域”和“效费比”四个方面对协同拦截高超声速飞行器未来发展方向进行了展望, 为临近空间拦截制导技术研究提供参考. The unique performance advantages of hypersonic vehicles represent a critical challenge for existing defense systems. To facilitate defensive operations against hypersonic vehicles in near space, this paper systematically discusses both the advantages of these vehicles and the difficulties in intercepting them. Focusing on the state-of-the-art terminal guidance laws for intercepting hypersonic vehicles in near space, we examine research progress in the area of single- and multi-interceptor cooperative guidance laws and summarize their advantages and disadvantages. We also highlight future research directions for developing an effective terminal guidance law for multi-interceptor cooperative interception of hypersonic vehicles, based on four aspects: the information domain, space domain, physical domain, and effect-cost ratio. The findings provide a reference for further research into near-space interceptor terminal guidance technologies.
临近空间高超声速飞行器是指在临近空间能够以大于5马赫速度飞行的一类飞行器, 具有飞行速度快、 突防能力强、 作战半径大和响应迅速等特点. 凭借其优异的性能优势, 高超声速飞行器逐渐成为各个国家新的空天博弈焦点, 给现有防御体系带来巨大挑战. 为满足临近空间高超声速飞行器防御需求, 本文系统性地梳理高超声速飞行器的“五大优势”及拦截高超声速飞行器的“四大难点”. 其次, 针对现阶段高超声速飞行器拦截制导律, 对基于单弹制导律和多弹协同制导律进行综述, 并归纳其优缺点. 最后, 从“信息域”、 “空间域”、 “物理域”和“效费比”四个方面对协同拦截高超声速飞行器未来发展方向进行了展望, 为临近空间拦截制导技术研究提供参考. The unique performance advantages of hypersonic vehicles represent a critical challenge for existing defense systems. To facilitate defensive operations against hypersonic vehicles in near space, this paper systematically discusses both the advantages of these vehicles and the difficulties in intercepting them. Focusing on the state-of-the-art terminal guidance laws for intercepting hypersonic vehicles in near space, we examine research progress in the area of single- and multi-interceptor cooperative guidance laws and summarize their advantages and disadvantages. We also highlight future research directions for developing an effective terminal guidance law for multi-interceptor cooperative interception of hypersonic vehicles, based on four aspects: the information domain, space domain, physical domain, and effect-cost ratio. The findings provide a reference for further research into near-space interceptor terminal guidance technologies.
期刊介绍:
Journal of Zhejiang University SCIENCE A covers research in Applied Physics, Mechanical and Civil Engineering, Environmental Science and Energy, Materials Science and Chemical Engineering, etc.