Exploiting the implicit independence assumption for learning directed graphical models

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Intelligent Data Analysis Pub Date : 2023-06-01 DOI:10.3233/ida-226806
Limin Wang, Junyang Wei, Kuo Li, Jiaping Zhou
{"title":"Exploiting the implicit independence assumption for learning directed graphical models","authors":"Limin Wang, Junyang Wei, Kuo Li, Jiaping Zhou","doi":"10.3233/ida-226806","DOIUrl":null,"url":null,"abstract":"Bayesian network classifiers (BNCs) provide a sound formalism for representing probabilistic knowledge and reasoning with uncertainty. Explicit independence assumptions can effectively and efficiently reduce the size of the search space for solving the NP-complete problem of structure learning. Strong conditional dependencies, when added to the network topology of BNC, can relax the independence assumptions, whereas the weak ones may result in biased estimates of conditional probability and degradation in generalization performance. In this paper, we propose an extension to the k-dependence Bayesian classifier (KDB) that achieves the bias/variance trade-off by verifying the rationality of implicit independence assumptions implicated. The informational and probabilistic dependency relationships represented in the learned robust topologies will be more appropriate for fitting labeled and unlabeled data, respectively. The comprehensive experimental results on 40 UCI datasets show that our proposed algorithm achieves competitive classification performance when compared to state-of-the-art BNC learners and their efficient variants in terms of zero-one loss, root mean square error (RMSE), bias and variance.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":"92 1","pages":"1143-1165"},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-226806","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian network classifiers (BNCs) provide a sound formalism for representing probabilistic knowledge and reasoning with uncertainty. Explicit independence assumptions can effectively and efficiently reduce the size of the search space for solving the NP-complete problem of structure learning. Strong conditional dependencies, when added to the network topology of BNC, can relax the independence assumptions, whereas the weak ones may result in biased estimates of conditional probability and degradation in generalization performance. In this paper, we propose an extension to the k-dependence Bayesian classifier (KDB) that achieves the bias/variance trade-off by verifying the rationality of implicit independence assumptions implicated. The informational and probabilistic dependency relationships represented in the learned robust topologies will be more appropriate for fitting labeled and unlabeled data, respectively. The comprehensive experimental results on 40 UCI datasets show that our proposed algorithm achieves competitive classification performance when compared to state-of-the-art BNC learners and their efficient variants in terms of zero-one loss, root mean square error (RMSE), bias and variance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用内隐独立性假设学习有向图形模型
贝叶斯网络分类器(bcs)为表示概率知识和不确定性推理提供了良好的形式。明确的独立性假设可以有效地减小求解结构学习的np完全问题的搜索空间大小。当在BNC网络拓扑中加入强条件依赖关系时,可以放松独立性假设,而弱条件依赖关系则可能导致条件概率估计的偏差和泛化性能的下降。在本文中,我们提出了k依赖贝叶斯分类器(KDB)的扩展,该分类器通过验证隐含独立性假设的合理性来实现偏差/方差权衡。学习到的鲁棒拓扑中表示的信息依赖关系和概率依赖关系将分别更适合于拟合有标记和未标记的数据。在40个UCI数据集上的综合实验结果表明,与最先进的BNC学习器及其有效变体相比,我们提出的算法在0 - 1损失、均方根误差(RMSE)、偏差和方差方面取得了相当的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligent Data Analysis
Intelligent Data Analysis 工程技术-计算机:人工智能
CiteScore
2.20
自引率
5.90%
发文量
85
审稿时长
3.3 months
期刊介绍: Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.
期刊最新文献
ELCA: Enhanced boundary location for Chinese named entity recognition via contextual association Identifying relevant features of CSE-CIC-IDS2018 dataset for the development of an intrusion detection system Knowledge graph embedding in a uniform space MeFiNet: Modeling multi-semantic convolution-based feature interactions for CTR prediction Enhancing Adaboost performance in the presence of class-label noise: A comparative study on EEG-based classification of schizophrenic patients and benchmark datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1