Predictive Regressions for Aggregate Stock Market Volatility with Machine Learning

Juan D. Díaz, Erwin Hansen, Gabriel Cabrera
{"title":"Predictive Regressions for Aggregate Stock Market Volatility with Machine Learning","authors":"Juan D. Díaz, Erwin Hansen, Gabriel Cabrera","doi":"10.2139/ssrn.3824789","DOIUrl":null,"url":null,"abstract":"We investigate whether machine learning techniques and a large set of financial and macroeconomic variables can be used to predict future S&P realized volatility. We evaluate the aggregate volatility predictions of regularization methods (Ridge, Lasso, and Elastic Net), tree-based methods (Random forest and Gradient boosting), and forecast combination methods. We find that the machine learning algorithms outperform autoregressive benchmark models, both statistically and economically, and that the tree-based methods perform the best. In addition to its past realizations, our analysis reveals that the main drivers of aggregate volatility are several financial and macroeconomic uncertainty proxies.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3824789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate whether machine learning techniques and a large set of financial and macroeconomic variables can be used to predict future S&P realized volatility. We evaluate the aggregate volatility predictions of regularization methods (Ridge, Lasso, and Elastic Net), tree-based methods (Random forest and Gradient boosting), and forecast combination methods. We find that the machine learning algorithms outperform autoregressive benchmark models, both statistically and economically, and that the tree-based methods perform the best. In addition to its past realizations, our analysis reveals that the main drivers of aggregate volatility are several financial and macroeconomic uncertainty proxies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的股票市场总波动预测回归
我们研究机器学习技术和大量金融和宏观经济变量是否可用于预测未来标普实现波动率。我们评估了正则化方法(Ridge、Lasso和Elastic Net)、基于树的方法(随机森林和梯度增强)和预测组合方法的总波动率预测。我们发现机器学习算法在统计和经济上都优于自回归基准模型,并且基于树的方法表现最好。除了其过去的实现,我们的分析表明,总波动的主要驱动因素是几个金融和宏观经济不确定性代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite Sample Analysis of Predictive Regressions with Long-Horizon Returns Modelling & Forecasting Volatility of Daily Stock Returns Using GARCH Models: Evidence from Dhaka Stock Exchange Late to Recessions: Stocks and the Business Cycle Predicting Individual Corporate Bond Returns Operating Exposure to Weather, Earnings Predictability, and Analyst Forecast
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1