Eliminating the Redundancy in MapReduce-Based Entity Resolution

Cairong Yan, Yalong Song, Jian Wang, Wenjing Guo
{"title":"Eliminating the Redundancy in MapReduce-Based Entity Resolution","authors":"Cairong Yan, Yalong Song, Jian Wang, Wenjing Guo","doi":"10.1109/CCGrid.2015.24","DOIUrl":null,"url":null,"abstract":"Entity resolution is the basic operation of data quality management, and the key step to find the value of data. The parallel data processing framework based on MapReduce can deal with the challenge brought by big data. However, there exist two important issues, avoiding redundant pairs led by the multi-pass blocking method and optimizing candidate pairs based on the transitive relations of similarity. In this paper, we propose a multi-signature based parallel entity resolution method, called multi-sig-er, which supports unstructured data and structured data. Two redundancy elimination strategies are adopted to prune the candidate pairs and reduce the number of similarity computation without affecting the resolution accuracy. Experimental results on real-world datasets show that our method tends to handle large datasets and it is more suitable for complex similarity computation than simple object matching.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"6 1","pages":"1233-1236"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Entity resolution is the basic operation of data quality management, and the key step to find the value of data. The parallel data processing framework based on MapReduce can deal with the challenge brought by big data. However, there exist two important issues, avoiding redundant pairs led by the multi-pass blocking method and optimizing candidate pairs based on the transitive relations of similarity. In this paper, we propose a multi-signature based parallel entity resolution method, called multi-sig-er, which supports unstructured data and structured data. Two redundancy elimination strategies are adopted to prune the candidate pairs and reduce the number of similarity computation without affecting the resolution accuracy. Experimental results on real-world datasets show that our method tends to handle large datasets and it is more suitable for complex similarity computation than simple object matching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
消除基于mapreduce的实体解析中的冗余
实体解析是数据质量管理的基本操作,是发现数据价值的关键步骤。基于MapReduce的并行数据处理框架可以应对大数据带来的挑战。然而,存在两个重要问题,即避免多通道阻塞法导致的冗余对和基于相似性传递关系的候选对优化。本文提出了一种基于多重签名的并行实体解析方法,即multi-sign -er,该方法支持非结构化数据和结构化数据。采用两种冗余消除策略,在不影响分辨率精度的前提下,对候选对进行修剪,减少相似性计算次数。在实际数据集上的实验结果表明,该方法倾向于处理大型数据集,比简单的对象匹配更适合复杂的相似度计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self Protecting Data Sharing Using Generic Policies Partition-Aware Routing to Improve Network Isolation in Infiniband Based Multi-tenant Clusters MIC-Tandem: Parallel X!Tandem Using MIC on Tandem Mass Spectrometry Based Proteomics Data Study of the KVM CPU Performance of Open-Source Cloud Management Platforms Visualizing City Events on Search Engine: Tword the Search Infrustration for Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1