Florian Adamsky, Hassan Khan, M. Rajarajan, S. A. Khayam, Rudolf Jäger
{"title":"Poster: Destabilizing BitTorrent's clusters to attack high bandwidth leechers","authors":"Florian Adamsky, Hassan Khan, M. Rajarajan, S. A. Khayam, Rudolf Jäger","doi":"10.1145/2046707.2093478","DOIUrl":null,"url":null,"abstract":"BitTorrent protocol incentivizes sharing through its choking algorithm. BitTorrent choking algorithm creates clusters of leechers with similar upload capacity to achieve higher overall transfer rates. We show that a malicious peer can exploit BitTorrent's choking algorithm to reduce the upload utilization of high bandwidth leechers. We use a testbed comprising of 24 nodes to provide experimental evidence of a distributed attack in which the malicious peers increase the download time for high bandwidth leechers by up to 16% and increases average download time of the swarm by up to 15% by using distributed and loosely-coupled malicious peers which comprise only 4.7% of the swarm. The countermeasures of this attack are a part of our ongoing research work.","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":"1 1","pages":"725-728"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2046707.2093478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
BitTorrent protocol incentivizes sharing through its choking algorithm. BitTorrent choking algorithm creates clusters of leechers with similar upload capacity to achieve higher overall transfer rates. We show that a malicious peer can exploit BitTorrent's choking algorithm to reduce the upload utilization of high bandwidth leechers. We use a testbed comprising of 24 nodes to provide experimental evidence of a distributed attack in which the malicious peers increase the download time for high bandwidth leechers by up to 16% and increases average download time of the swarm by up to 15% by using distributed and loosely-coupled malicious peers which comprise only 4.7% of the swarm. The countermeasures of this attack are a part of our ongoing research work.