Detecting patterns of co-variation in deep-sequenced virus populations

Susana Posada-Céspedes, David Seifert, N. Beerenwinkel
{"title":"Detecting patterns of co-variation in deep-sequenced virus populations","authors":"Susana Posada-Céspedes, David Seifert, N. Beerenwinkel","doi":"10.1109/ICCABS.2016.7802787","DOIUrl":null,"url":null,"abstract":"Advances in high-throughput sequencing (HTS) technologies have facilitated the assessment of the genetic diversity of heterogeneous virus populations at an unprecedented level of detail. However, the existence of technical errors confounds the identification of truthful variants. Here, we present a comparative approach for the identification of patterns of co-variation in deep-sequenced virus populations. In addition to sequencing errors, we account for other unknown sources of error by modeling the occurrences of patterns of mutations using the Dirichlet distribution as prior for the multinomial distribution.","PeriodicalId":89933,"journal":{"name":"IEEE ... International Conference on Computational Advances in Bio and Medical Sciences : [proceedings]. IEEE International Conference on Computational Advances in Bio and Medical Sciences","volume":"25 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Computational Advances in Bio and Medical Sciences : [proceedings]. IEEE International Conference on Computational Advances in Bio and Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCABS.2016.7802787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in high-throughput sequencing (HTS) technologies have facilitated the assessment of the genetic diversity of heterogeneous virus populations at an unprecedented level of detail. However, the existence of technical errors confounds the identification of truthful variants. Here, we present a comparative approach for the identification of patterns of co-variation in deep-sequenced virus populations. In addition to sequencing errors, we account for other unknown sources of error by modeling the occurrences of patterns of mutations using the Dirichlet distribution as prior for the multinomial distribution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测深度测序病毒群体的共变异模式
高通量测序(HTS)技术的进步促进了对异质病毒种群的遗传多样性进行前所未有的详细评估。然而,技术错误的存在混淆了真实变体的识别。在这里,我们提出了一种比较方法来鉴定深度测序病毒群体的共变异模式。除了测序误差外,我们还通过使用Dirichlet分布作为多项分布的先验,对突变模式的出现进行建模,以解释其他未知的误差来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational Advances in Bio and Medical Sciences: 11th International Conference, ICCABS 2021, Virtual Event, December 16–18, 2021, Revised Selected Papers Computational Advances in Bio and Medical Sciences: 10th International Conference, ICCABS 2020, Virtual Event, December 10-12, 2020, Revised Selected Papers Single-Cell Gene Regulatory Network Analysis Reveals Potential Mechanisms of Action of Antimalarials Against SARS-CoV-2 Computational Study of Action Potential Generation in Urethral Smooth Muscle Cell DNA Read Feature Importance Using Machine Learning for Read Alignment Categories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1