{"title":"Data Integration and Machine Learning: A Natural Synergy","authors":"X. Dong, Theodoros Rekatsinas","doi":"10.14778/3229863.3229876","DOIUrl":null,"url":null,"abstract":"There is now more data to analyze than ever before. As data volume and variety have increased, so have the ties between machine learning and data integration become stronger. For machine learning to be effective, one must utilize data from the greatest possible variety of sources; and this is why data integration plays a key role. At the same time machine learning is driving automation in data integration, resulting in overall reduction of integration costs and improved accuracy. This tutorial focuses on three aspects of the synergistic relationship between data integration and machine learning: (1) we survey how state-of-the-art data integration solutions rely on machine learning-based approaches for accurate results and effective human-in-the-loop pipelines, (2) we review how end-to-end machine learning applications rely on data integration to identify accurate, clean, and relevant data for their analytics exercises, and (3) we discuss open research challenges and opportunities that span across data integration and machine learning.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3229863.3229876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95
Abstract
There is now more data to analyze than ever before. As data volume and variety have increased, so have the ties between machine learning and data integration become stronger. For machine learning to be effective, one must utilize data from the greatest possible variety of sources; and this is why data integration plays a key role. At the same time machine learning is driving automation in data integration, resulting in overall reduction of integration costs and improved accuracy. This tutorial focuses on three aspects of the synergistic relationship between data integration and machine learning: (1) we survey how state-of-the-art data integration solutions rely on machine learning-based approaches for accurate results and effective human-in-the-loop pipelines, (2) we review how end-to-end machine learning applications rely on data integration to identify accurate, clean, and relevant data for their analytics exercises, and (3) we discuss open research challenges and opportunities that span across data integration and machine learning.