{"title":"FRT Capability Enhancement of DFIG-based Wind Turbine with Coordination Control of MSVC and FCL","authors":"Long Xian, Lizhen Wu","doi":"10.2174/2352096516666230816121231","DOIUrl":null,"url":null,"abstract":"\n\nTo address the problems of various FRT (fault ride through) schemes in DFIG (doubly fed induction generator) systems, especially their applicability under different voltage sags, a combination scheme of an MSVC (minimized series voltage compensator) and FCL (fault current limiter) is proposed.\n\n\n\nBased on the analysis of the mathematical model of the DFIG and considering the capacity and volume in the process of practical engineering, the application structure and specific control strategy of an MSVC in DFIG systems are designed on the stator side, and the application effect is analyzed theoretically. Simultaneously, the application structure and control strategy of the FCL is proposed on the rotor side, and the application effect of the combination scheme is theoretically deduced and analyzed. Moreover, the simulation model is built on the MATLAB/Simulink platform.\n\n\n\nThe simulation results show that the scheme can quickly and effectively recover the fault voltage of the DFIG under different voltage sag degrees and has better dynamic performance. At the same time, it can effectively limit the fault current and suppress the DC-link voltage of the rotor side, and the transition process is relatively stable.\n\n\n\nThe purpose of improving the FRT capability of the DFIG system is realized.\n","PeriodicalId":43275,"journal":{"name":"Recent Advances in Electrical & Electronic Engineering","volume":"12 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Electrical & Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2352096516666230816121231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To address the problems of various FRT (fault ride through) schemes in DFIG (doubly fed induction generator) systems, especially their applicability under different voltage sags, a combination scheme of an MSVC (minimized series voltage compensator) and FCL (fault current limiter) is proposed.
Based on the analysis of the mathematical model of the DFIG and considering the capacity and volume in the process of practical engineering, the application structure and specific control strategy of an MSVC in DFIG systems are designed on the stator side, and the application effect is analyzed theoretically. Simultaneously, the application structure and control strategy of the FCL is proposed on the rotor side, and the application effect of the combination scheme is theoretically deduced and analyzed. Moreover, the simulation model is built on the MATLAB/Simulink platform.
The simulation results show that the scheme can quickly and effectively recover the fault voltage of the DFIG under different voltage sag degrees and has better dynamic performance. At the same time, it can effectively limit the fault current and suppress the DC-link voltage of the rotor side, and the transition process is relatively stable.
The purpose of improving the FRT capability of the DFIG system is realized.
期刊介绍:
Recent Advances in Electrical & Electronic Engineering publishes full-length/mini reviews and research articles, guest edited thematic issues on electrical and electronic engineering and applications. The journal also covers research in fast emerging applications of electrical power supply, electrical systems, power transmission, electromagnetism, motor control process and technologies involved and related to electrical and electronic engineering. The journal is essential reading for all researchers in electrical and electronic engineering science.