On the limitations of the applicability of Young’s equations temperature

M. P. Dokhov
{"title":"On the limitations of the applicability of Young’s equations temperature","authors":"M. P. Dokhov","doi":"10.17308/kcmf.2021.23/3432","DOIUrl":null,"url":null,"abstract":"The article uses the thermodynamics of interfacial phenomena to justify the fact that Young’s equations can correctly describe the three-phase equilibrium with any type of interatomic bonds. Wetting, adhesion, dissolution, surface adsorption, and other surface phenomena are important characteristics, whichlargely determine the quality and durability of materials, and the development of a number of production techniques, including welding, soldering, baking of metallic and non-metallic powders, etc. Therefore, it is important to study them.Using experimental data regarding surface energies of liquids (melts) and contact angles available in the literature, we calculated the surface energies of many solid metals, oxides, carbides, and other inorganic and organic materials without taking into account the amount of the interfacial energy at the solid-liquid (melt) interface. Some researchers assumed that in case of an acute contact angle the interfacial energy is low. Therefore, they neglected it and assumed it to be zero.Others knew that this value could not be measured, that is why they measured and calculated the difference between the surface energy of a solid and the interfacial energy of a solid and a liquid (melt), which is equal to the product of the surface energy of this liquid by the cosine of the contact angle. It is obvious that these methods of determining the surface energy based on such oversimplified assumptions result in poor accuracy.Through the use of examples this paper shows how the surface energies of solids were previously calculated and how the shortcomings of previous calculations can be corrected","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2021.23/3432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article uses the thermodynamics of interfacial phenomena to justify the fact that Young’s equations can correctly describe the three-phase equilibrium with any type of interatomic bonds. Wetting, adhesion, dissolution, surface adsorption, and other surface phenomena are important characteristics, whichlargely determine the quality and durability of materials, and the development of a number of production techniques, including welding, soldering, baking of metallic and non-metallic powders, etc. Therefore, it is important to study them.Using experimental data regarding surface energies of liquids (melts) and contact angles available in the literature, we calculated the surface energies of many solid metals, oxides, carbides, and other inorganic and organic materials without taking into account the amount of the interfacial energy at the solid-liquid (melt) interface. Some researchers assumed that in case of an acute contact angle the interfacial energy is low. Therefore, they neglected it and assumed it to be zero.Others knew that this value could not be measured, that is why they measured and calculated the difference between the surface energy of a solid and the interfacial energy of a solid and a liquid (melt), which is equal to the product of the surface energy of this liquid by the cosine of the contact angle. It is obvious that these methods of determining the surface energy based on such oversimplified assumptions result in poor accuracy.Through the use of examples this paper shows how the surface energies of solids were previously calculated and how the shortcomings of previous calculations can be corrected
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论温度杨氏方程适用性的局限性
本文用界面现象的热力学来证明杨氏方程可以正确地描述具有任何类型的原子间键的三相平衡。润湿、粘附、溶解、表面吸附等表面现象是材料的重要特性,它们在很大程度上决定了材料的质量和耐用性,并发展了许多生产技术,包括焊接、钎焊、金属和非金属粉末的烘烤等。因此,研究它们是很重要的。利用文献中关于液体(熔体)表面能和接触角的实验数据,我们计算了许多固体金属、氧化物、碳化物和其他无机和有机材料的表面能,而不考虑固液(熔体)界面的界面能。一些研究者认为,当接触角较大时,界面能较低。因此,他们忽略了它,假设它为零。其他人知道这个值是无法测量的,这就是为什么他们测量和计算固体的表面能和固体和液体(熔体)的界面能之间的差,它等于这种液体的表面能与接触角的余弦的乘积。很明显,这些基于这种过于简化的假设来确定表面能的方法精度很差。本文通过实例说明了固体表面能的计算方法,以及如何修正以往计算方法的不足之处
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dps protein localization studies in nanostructured silicon matrix by scanning electron microscopy Phase formation in the Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system High-temperature spectrophotometry of indium chloride vapours as a method of study of the In – Se system Electrodialysis of a sodium sulphate solution with experimental bentonite-modified bipolar membranes Synthesis of chitosan and N-vinylimidazole graft-copolymers and the properties of their aqueous solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1