Valentina A. Doroshenko, I. Khozyaev, Dmitry A. Yakovlev, A. Doroshenko, A. Shcherbakov
{"title":"Studying the Thermophysical Characteristics of the Muscle Mass of the Black Soldier Fly Larvaes (Hermetia Illucens) as a Drying Object","authors":"Valentina A. Doroshenko, I. Khozyaev, Dmitry A. Yakovlev, A. Doroshenko, A. Shcherbakov","doi":"10.15507/2658-4123.032.202204.613-629","DOIUrl":null,"url":null,"abstract":"Introduction. The main component of the compound feedstuff is fish meal, which has unstable quality and high price. Fish and meat-and-bone meals are replaced with protein concentrates and higher quality larvae proteins. The source of feed protein is the biomass of the black soldier flies (Hermetia illucens), which have a rich amino acid composition and also process food waste. The aim of the work is to study the thermal-physical characteristics of the muscle mass of the black soldier fly larvaes (Hermetia illucens).\nМатериалы и методы. The study focused on the muscle mass of black soldier fly larvaes (Hermetia illucens). The subject of the study is thermal-physical regularities during the drying process. The studies were conducted on the basis of Don State Technical University. The article describes determination of thermal-physical characteristics such as specific heat, thermal conductivity, moisture of the raw material, and oiliness.\nResults. Heat conductivity coefficient of water 0.555 W/(m∙K) for food and feed products from 0.25 to 0.40 W/(m∙K) black Soldier Fly larvae have a heat conductivity equal to 0.144 W/(m∙K), which is lower than conventional feedstuff components. The humidity of the examined raw material is 45% or higher while the heat conductivity remains linear and practically does not increase.\nDiscussion and Conclusion. The results obtained during the work can be used for parameter determination and design of various types of dryers, and for mathematical description of the dynamics and kinetics of drying.","PeriodicalId":53796,"journal":{"name":"Engineering Technologies and Systems","volume":"7 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Technologies and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2658-4123.032.202204.613-629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Introduction. The main component of the compound feedstuff is fish meal, which has unstable quality and high price. Fish and meat-and-bone meals are replaced with protein concentrates and higher quality larvae proteins. The source of feed protein is the biomass of the black soldier flies (Hermetia illucens), which have a rich amino acid composition and also process food waste. The aim of the work is to study the thermal-physical characteristics of the muscle mass of the black soldier fly larvaes (Hermetia illucens).
Материалы и методы. The study focused on the muscle mass of black soldier fly larvaes (Hermetia illucens). The subject of the study is thermal-physical regularities during the drying process. The studies were conducted on the basis of Don State Technical University. The article describes determination of thermal-physical characteristics such as specific heat, thermal conductivity, moisture of the raw material, and oiliness.
Results. Heat conductivity coefficient of water 0.555 W/(m∙K) for food and feed products from 0.25 to 0.40 W/(m∙K) black Soldier Fly larvae have a heat conductivity equal to 0.144 W/(m∙K), which is lower than conventional feedstuff components. The humidity of the examined raw material is 45% or higher while the heat conductivity remains linear and practically does not increase.
Discussion and Conclusion. The results obtained during the work can be used for parameter determination and design of various types of dryers, and for mathematical description of the dynamics and kinetics of drying.