{"title":"Binaural cue coding-Part II: Schemes and applications","authors":"C. Faller, F. Baumgarte","doi":"10.1109/TSA.2003.818108","DOIUrl":null,"url":null,"abstract":"Binaural Cue Coding (BCC) is a method for multichannel spatial rendering based on one down-mixed audio channel and side information. The companion paper (Part I) covers the psychoacoustic fundamentals of this method and outlines principles for the design of BCC schemes. The BCC analysis and synthesis methods of Part I are motivated and presented in the framework of stereophonic audio coding. This paper, Part II, generalizes the basic BCC schemes presented in Part I. It includes BCC for multichannel signals and employs an enhanced set of perceptual spatial cues for BCC synthesis. A scheme for multichannel audio coding is presented. Moreover, a modified scheme is derived that allows flexible rendering of the spatial image at the receiver supporting dynamic control. All aspects of complete BCC encoder and decoder implementations are discussed, such as down-mixing of the input signals, low complexity estimation of the spatial cues, and quantization and coding of the side information. Application examples are given and the performance of the coder implementations are evaluated and discussed based on subjective listening test results.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"65 1","pages":"520-531"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"237","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.818108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 237
Abstract
Binaural Cue Coding (BCC) is a method for multichannel spatial rendering based on one down-mixed audio channel and side information. The companion paper (Part I) covers the psychoacoustic fundamentals of this method and outlines principles for the design of BCC schemes. The BCC analysis and synthesis methods of Part I are motivated and presented in the framework of stereophonic audio coding. This paper, Part II, generalizes the basic BCC schemes presented in Part I. It includes BCC for multichannel signals and employs an enhanced set of perceptual spatial cues for BCC synthesis. A scheme for multichannel audio coding is presented. Moreover, a modified scheme is derived that allows flexible rendering of the spatial image at the receiver supporting dynamic control. All aspects of complete BCC encoder and decoder implementations are discussed, such as down-mixing of the input signals, low complexity estimation of the spatial cues, and quantization and coding of the side information. Application examples are given and the performance of the coder implementations are evaluated and discussed based on subjective listening test results.