{"title":"Design and Application of Kanban Control System in a Multi-Stage, Mixed-Model Assembly Line","authors":"Lei YANG, Xiao-peng ZHANG","doi":"10.1016/S1874-8651(10)60070-1","DOIUrl":null,"url":null,"abstract":"<div><p>This article studies the parameter design and the performance optimization of a Kanban system without stockouts in a multi-stage, mixed-model assembly line. The model of a Kanban system based on production processes is established by examining the relationship among the set-up time, the amount of work in process (WIP), the capacity indicated by a Kanban, and the takt-time ratio. A novel method for optimizing performance on the premise of no stockouts is proposed. Empirical results show that the amount of WIP is reduced remarkably after optimization.</p></div>","PeriodicalId":101206,"journal":{"name":"Systems Engineering - Theory & Practice","volume":"29 9","pages":"Pages 64-72"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-8651(10)60070-1","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering - Theory & Practice","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874865110600701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This article studies the parameter design and the performance optimization of a Kanban system without stockouts in a multi-stage, mixed-model assembly line. The model of a Kanban system based on production processes is established by examining the relationship among the set-up time, the amount of work in process (WIP), the capacity indicated by a Kanban, and the takt-time ratio. A novel method for optimizing performance on the premise of no stockouts is proposed. Empirical results show that the amount of WIP is reduced remarkably after optimization.