Multiple-Input Neural Network-Based Residual Echo Suppression

Guillaume Carbajal, R. Serizel, E. Vincent, E. Humbert
{"title":"Multiple-Input Neural Network-Based Residual Echo Suppression","authors":"Guillaume Carbajal, R. Serizel, E. Vincent, E. Humbert","doi":"10.1109/ICASSP.2018.8461476","DOIUrl":null,"url":null,"abstract":"A residual echo suppressor (RES) aims to suppress the residual echo in the output of an acoustic echo canceler (AEC). Spectral-based RES approaches typically estimate the magnitude spectra of the near-end speech and the residual echo from a single input, that is either the far-end speech or the echo computed by the AEC, and derive the RES filter coefficients accordingly. These single inputs do not always suffice to discriminate the near-end speech from the remaining echo. In this paper, we propose a neural network-based approach that directly estimates the RES filter coefficients from multiple inputs, including the AEC output, the far-end speech, and/or the echo computed by the AEC. We evaluate our system on real recordings of acoustic echo and near-end speech acquired in various situations with a smart speaker. We compare it to two single-input spectral-based approaches in terms of echo reduction and near-end speech distortion.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"68 1","pages":"231-235"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

A residual echo suppressor (RES) aims to suppress the residual echo in the output of an acoustic echo canceler (AEC). Spectral-based RES approaches typically estimate the magnitude spectra of the near-end speech and the residual echo from a single input, that is either the far-end speech or the echo computed by the AEC, and derive the RES filter coefficients accordingly. These single inputs do not always suffice to discriminate the near-end speech from the remaining echo. In this paper, we propose a neural network-based approach that directly estimates the RES filter coefficients from multiple inputs, including the AEC output, the far-end speech, and/or the echo computed by the AEC. We evaluate our system on real recordings of acoustic echo and near-end speech acquired in various situations with a smart speaker. We compare it to two single-input spectral-based approaches in terms of echo reduction and near-end speech distortion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多输入神经网络的残差回波抑制
残余回波抑制器(RES)的目的是抑制声回波消除器(AEC)输出中的残余回波。基于频谱的RES方法通常估计近端语音和单输入残差回波的幅度谱,即远端语音或AEC计算的回波,并据此推导RES滤波器系数。这些单一输入并不总是足以区分近端语音和剩余的回声。在本文中,我们提出了一种基于神经网络的方法,该方法直接从多个输入中估计RES滤波器系数,包括AEC输出、远端语音和/或AEC计算的回波。我们用智能扬声器在各种情况下获得的声学回声和近端语音的真实录音来评估我们的系统。我们将其与两种基于单输入频谱的方法在回波减少和近端语音失真方面进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1