Guillaume Carbajal, R. Serizel, E. Vincent, E. Humbert
{"title":"Multiple-Input Neural Network-Based Residual Echo Suppression","authors":"Guillaume Carbajal, R. Serizel, E. Vincent, E. Humbert","doi":"10.1109/ICASSP.2018.8461476","DOIUrl":null,"url":null,"abstract":"A residual echo suppressor (RES) aims to suppress the residual echo in the output of an acoustic echo canceler (AEC). Spectral-based RES approaches typically estimate the magnitude spectra of the near-end speech and the residual echo from a single input, that is either the far-end speech or the echo computed by the AEC, and derive the RES filter coefficients accordingly. These single inputs do not always suffice to discriminate the near-end speech from the remaining echo. In this paper, we propose a neural network-based approach that directly estimates the RES filter coefficients from multiple inputs, including the AEC output, the far-end speech, and/or the echo computed by the AEC. We evaluate our system on real recordings of acoustic echo and near-end speech acquired in various situations with a smart speaker. We compare it to two single-input spectral-based approaches in terms of echo reduction and near-end speech distortion.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"68 1","pages":"231-235"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
A residual echo suppressor (RES) aims to suppress the residual echo in the output of an acoustic echo canceler (AEC). Spectral-based RES approaches typically estimate the magnitude spectra of the near-end speech and the residual echo from a single input, that is either the far-end speech or the echo computed by the AEC, and derive the RES filter coefficients accordingly. These single inputs do not always suffice to discriminate the near-end speech from the remaining echo. In this paper, we propose a neural network-based approach that directly estimates the RES filter coefficients from multiple inputs, including the AEC output, the far-end speech, and/or the echo computed by the AEC. We evaluate our system on real recordings of acoustic echo and near-end speech acquired in various situations with a smart speaker. We compare it to two single-input spectral-based approaches in terms of echo reduction and near-end speech distortion.