The Determination of Feasible Control Variables for Geoengineering and Weather Modification Based on the Theory of Sensitivity in Dynamical Systems

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS Journal of Control Science and Engineering Pub Date : 2016-06-01 DOI:10.1155/2016/1547462
S. Soldatenko, R. Yusupov
{"title":"The Determination of Feasible Control Variables for Geoengineering and Weather Modification Based on the Theory of Sensitivity in Dynamical Systems","authors":"S. Soldatenko, R. Yusupov","doi":"10.1155/2016/1547462","DOIUrl":null,"url":null,"abstract":"Geophysical cybernetics allows for exploring weather and climate modification (geoengineering) as an optimal control problem in which the Earth’s climate system is considered as a control system and the role of controller is given to human operators. In mathematical models used in climate studies control actions that manipulate the weather and climate can be expressed via variations in model parameters that act as controls. In this paper, we propose the ?instability-sensitivity? approach that allows for determining feasible control variables in geoengineering. The method is based on the sensitivity analysis of mathematical models that describe various types of natural instability phenomena. The applicability of this technique is illustrated by a model of atmospheric baroclinic instability since this physical mechanism plays a significant role in the general circulation of the atmosphere and, consequently, in climate formation. The growth rate of baroclinic unstable waves is taken as an indicator of control manipulations. The information obtained via calculated sensitivity coefficients is very beneficial for assessing the physical feasibility of methods of control of the large-scale atmospheric dynamics and for designing optimal control systems for climatic processes. It also provides insight into potential future changes in baroclinic waves, as a result of a changing climate.","PeriodicalId":46052,"journal":{"name":"Journal of Control Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Control Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/1547462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 4

Abstract

Geophysical cybernetics allows for exploring weather and climate modification (geoengineering) as an optimal control problem in which the Earth’s climate system is considered as a control system and the role of controller is given to human operators. In mathematical models used in climate studies control actions that manipulate the weather and climate can be expressed via variations in model parameters that act as controls. In this paper, we propose the ?instability-sensitivity? approach that allows for determining feasible control variables in geoengineering. The method is based on the sensitivity analysis of mathematical models that describe various types of natural instability phenomena. The applicability of this technique is illustrated by a model of atmospheric baroclinic instability since this physical mechanism plays a significant role in the general circulation of the atmosphere and, consequently, in climate formation. The growth rate of baroclinic unstable waves is taken as an indicator of control manipulations. The information obtained via calculated sensitivity coefficients is very beneficial for assessing the physical feasibility of methods of control of the large-scale atmospheric dynamics and for designing optimal control systems for climatic processes. It also provides insight into potential future changes in baroclinic waves, as a result of a changing climate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动力系统灵敏度理论的地球工程和人工影响天气可行控制变量的确定
地球物理控制论允许探索天气和气候变化(地球工程)作为一个最优控制问题,其中地球气候系统被视为一个控制系统,控制器的角色被赋予人类操作员。在气候研究中使用的数学模型中,操纵天气和气候的控制行动可以通过作为控制的模型参数的变化来表示。在本文中,我们提出了?不稳定敏感性?一种在地球工程中确定可行控制变量的方法。该方法基于描述各种自然失稳现象的数学模型的敏感性分析。大气斜压不稳定模式说明了这种技术的适用性,因为这种物理机制在大气环流中起着重要作用,从而在气候形成中起着重要作用。斜压不稳定波的增长速度作为控制操作的指标。通过计算的灵敏度系数获得的信息对于评估大尺度大气动力学控制方法的物理可行性和设计气候过程的最优控制系统是非常有益的。它还提供了对未来斜压波的潜在变化的洞察,这是气候变化的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Control Science and Engineering
Journal of Control Science and Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
4.70
自引率
0.00%
发文量
54
审稿时长
19 weeks
期刊介绍: Journal of Control Science and Engineering is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of control science and engineering.
期刊最新文献
An Accelerated Fixed-Point Algorithm Applied to Quadratic Convex Separable Knapsack Problems An Accelerated Fixed-Point Algorithm Applied to Quadratic Convex Separable Knapsack Problems Retracted: Research on Nonlinear Time Series Processing Method for Automatic Building Construction Management Retracted: Design and Discussion on Information Management and Control System of Agricultural Machinery and Equipment Retracted: Robot Fault Detection Based on Big Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1