J. Götzfried, J. Götzfried, A. Döpp, A. Döpp, M. Gilljohann, M. Gilljohann, F. Foerster, H. Ding, H. Ding, S. Schindler, S. Schindler, G. Schilling, A. Buck, L. Veisz, L. Veisz, S. Karsch, S. Karsch
{"title":"Physics of High-Charge Electron Beams in Laser-Plasma Wakefields","authors":"J. Götzfried, J. Götzfried, A. Döpp, A. Döpp, M. Gilljohann, M. Gilljohann, F. Foerster, H. Ding, H. Ding, S. Schindler, S. Schindler, G. Schilling, A. Buck, L. Veisz, L. Veisz, S. Karsch, S. Karsch","doi":"10.1103/PHYSREVX.10.041015","DOIUrl":null,"url":null,"abstract":"Laser wakefield acceleration (LWFA) and its particle-driven counterpart, plasma wakefield acceleration (PWFA), are commonly treated as separate, though related branches of high-gradient plasma-based acceleration. However, novel proposed schemes are increasingly residing at the interface of both concepts where the understanding of their interplay becomes crucial. Here, we report on experiments covering a wide range of parameters by using nanocoulomb-class quasi-monoenergetic electron beams from LWFA with a 100-TW-class laser. Based on a controlled electron injection, these beams reach record-level performance in terms of laser-to-beam energy transfer efficiency (up to 10%), spectral charge density (regularly exceeding 10 pC/MeV) and divergence (1 mrad full width at half maximum divergence). The impact of charge fluctuations on the energy spectra of electron bunches is assessed for different laser parameters, including a few-cycle laser, followed by a presentation of results on beam loading in LWFA with two electron bunches. This scenario is particularly promising to provide high-quality electron beams by using one of the bunches to either tailor the laser wakefield via beam loading or to drive its own, beam-dominated wakefield. We present experimental evidence for the latter, showing a varying acceleration of a low-energy witness beam with respect to the charge of a high-energy drive beam in a spatially separate gas target. With the increasing availability of petawatt-class lasers the access to this new regime of laser-plasma wakefield acceleration will be further facilitated, thus providing new paths towards low-emittance beam generation for future plasma-based colliders or light sources.","PeriodicalId":8436,"journal":{"name":"arXiv: Accelerator Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVX.10.041015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
Laser wakefield acceleration (LWFA) and its particle-driven counterpart, plasma wakefield acceleration (PWFA), are commonly treated as separate, though related branches of high-gradient plasma-based acceleration. However, novel proposed schemes are increasingly residing at the interface of both concepts where the understanding of their interplay becomes crucial. Here, we report on experiments covering a wide range of parameters by using nanocoulomb-class quasi-monoenergetic electron beams from LWFA with a 100-TW-class laser. Based on a controlled electron injection, these beams reach record-level performance in terms of laser-to-beam energy transfer efficiency (up to 10%), spectral charge density (regularly exceeding 10 pC/MeV) and divergence (1 mrad full width at half maximum divergence). The impact of charge fluctuations on the energy spectra of electron bunches is assessed for different laser parameters, including a few-cycle laser, followed by a presentation of results on beam loading in LWFA with two electron bunches. This scenario is particularly promising to provide high-quality electron beams by using one of the bunches to either tailor the laser wakefield via beam loading or to drive its own, beam-dominated wakefield. We present experimental evidence for the latter, showing a varying acceleration of a low-energy witness beam with respect to the charge of a high-energy drive beam in a spatially separate gas target. With the increasing availability of petawatt-class lasers the access to this new regime of laser-plasma wakefield acceleration will be further facilitated, thus providing new paths towards low-emittance beam generation for future plasma-based colliders or light sources.