Groups with irreducibly unfaithful subsets for unitary representations

arXiv: Group Theory Pub Date : 2018-07-13 DOI:10.5802/CML.61
P. Caprace, P. Harpe
{"title":"Groups with irreducibly unfaithful subsets for unitary representations","authors":"P. Caprace, P. Harpe","doi":"10.5802/CML.61","DOIUrl":null,"url":null,"abstract":"Let $G$ be a group. A subset $F \\subset G$ is called irreducibly faithful if there exists an irreducible unitary representation $\\pi$ of $G$ such that $\\pi(x) \\ne \\text{id}$ for all $x \\in F \\smallsetminus \\{e\\}$. Otherwise $F$ is called irreducibly unfaithful. Given a positive integer $n$, we say that $G$ has Property $P(n)$ if every subset of size $n$ is irreducibly faithful. Every group has $P(1)$, by a classical result of Gelfand and Raikov. Walter proved that every group has $P(2)$. It is easy to see that some groups do not have $P(3)$. \nWe provide a complete description of the irreducibly unfaithful subsets of size $n$ in a (finite or infinite) countable group $G$ with Property $P(n-1)$: it turns out that such a subset is contained in a finite elementary abelian normal subgroup of $G$ of a particular kind. We deduce a characterization of Property $P(n)$ purely in terms of the group structure. It follows that, if a countable group $G$ has $P(n-1)$ and does not have $P(n)$, then $n$ is the cardinality of a projective space over a finite field. \nA group $G$ has Property $Q(n)$ if, for every subset $F \\subset G$ of size at most $n$, there exists an irreducible unitary representation $\\pi$ of $G$ such that $\\pi(x) \\ne \\pi(y)$ for any distinct $x, y$ in $F$. Every group has $Q(2)$. For countable groups, it is shown that Property $Q(3)$ is equivalent to $P(3)$, Property $Q(4)$ to $P(6)$, and Property $Q(5)$ to $P(9)$. For $m, n \\ge 4$, the relation between Properties $P(m)$ and $Q(n)$ is closely related to a well-documented open problem in additive combinatorics.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/CML.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be a group. A subset $F \subset G$ is called irreducibly faithful if there exists an irreducible unitary representation $\pi$ of $G$ such that $\pi(x) \ne \text{id}$ for all $x \in F \smallsetminus \{e\}$. Otherwise $F$ is called irreducibly unfaithful. Given a positive integer $n$, we say that $G$ has Property $P(n)$ if every subset of size $n$ is irreducibly faithful. Every group has $P(1)$, by a classical result of Gelfand and Raikov. Walter proved that every group has $P(2)$. It is easy to see that some groups do not have $P(3)$. We provide a complete description of the irreducibly unfaithful subsets of size $n$ in a (finite or infinite) countable group $G$ with Property $P(n-1)$: it turns out that such a subset is contained in a finite elementary abelian normal subgroup of $G$ of a particular kind. We deduce a characterization of Property $P(n)$ purely in terms of the group structure. It follows that, if a countable group $G$ has $P(n-1)$ and does not have $P(n)$, then $n$ is the cardinality of a projective space over a finite field. A group $G$ has Property $Q(n)$ if, for every subset $F \subset G$ of size at most $n$, there exists an irreducible unitary representation $\pi$ of $G$ such that $\pi(x) \ne \pi(y)$ for any distinct $x, y$ in $F$. Every group has $Q(2)$. For countable groups, it is shown that Property $Q(3)$ is equivalent to $P(3)$, Property $Q(4)$ to $P(6)$, and Property $Q(5)$ to $P(9)$. For $m, n \ge 4$, the relation between Properties $P(m)$ and $Q(n)$ is closely related to a well-documented open problem in additive combinatorics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酉表示下具有不可约不忠实子集的群
让$G$成为一个团体。一个子集$F \subset G$被称为不可约忠实的,如果存在一个不可约的酉表示$\pi$的$G$,使得$\pi(x) \ne \text{id}$对于所有$x \in F \smallsetminus \{e\}$。否则$F$被称为不可还原的不忠。给定一个正整数$n$,如果大小为$n$的每个子集都是不可约忠实的,我们说$G$具有属性$P(n)$。根据Gelfand和Raikov的经典结果,每个群体都有$P(1)$。Walter证明了每个组都有$P(2)$。很容易看出,有些组没有$P(3)$。给出了具有$P(n-1)$性质的(有限或无限)可数群$G$中大小为$n$的不可约不忠实子集的完整描述,证明了这样的子集包含在特定种类的有限初等阿贝尔正规子群$G$中。我们纯粹从群体结构的角度推导出属性$P(n)$的特征。由此可知,如果可数群$G$有$P(n-1)$而不有$P(n)$,则$n$是有限域上射影空间的基数。一个群$G$具有$Q(n)$的属性,如果对于每个不超过$n$大小的子集$F \subset G$,存在$G$的一个不可约的幺正表示$\pi$,使得$\pi(x) \ne \pi(y)$对于$F$中的任意一个不同的$x, y$。每个组都有$Q(2)$。对于可数群,可以看出Property $Q(3)$等价于$P(3)$, Property $Q(4)$等价于$P(6)$, Property $Q(5)$等价于$P(9)$。对于$m, n \ge 4$,属性$P(m)$和$Q(n)$之间的关系与加性组合学中一个记录良好的开放问题密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Galois descent of equivalences between blocks of 𝑝-nilpotent groups Onto extensions of free groups. Finite totally k-closed groups Shrinking braids and left distributive monoid Calculating Subgroups with GAP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1