Ryoya Osawa, Shinya Watanabe, T. Hiroyasu, S. Hiwa
{"title":"Performance Study of Double-Niched Evolutionary Algorithm on Multi-objective Knapsack Problems","authors":"Ryoya Osawa, Shinya Watanabe, T. Hiroyasu, S. Hiwa","doi":"10.1109/SSCI44817.2019.9003130","DOIUrl":null,"url":null,"abstract":"Multimodality is often observed in practical optimization problems. Therefore, multi-modal multi-objective evolutionary algorithms (MMEA) have been developed to tackle the multimodality of these problems. However, most of the existing studies focused on population diversity in either an objective or a decision space. A double-niched evolutionary algorithm (DNEA) is a state-of-the-art MMEA that employs a niche-sharing method to improve the population in both the objective and decision spaces. However, its performance has been evaluated solely for real-coded problems and not for binary-coded ones. In this study, the performance of DNEA is evaluated on a multi-objective 0/1 knapsack problem, and the population diversity in both the objective and decision spaces is evaluated using a pure diversity measure. The experimental results suggest that DNEA is effective for multi-objective 0/1 knapsack problems to improve the decision space diversity; further, its performance is significantly affected by its control parameter, niche radius.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"35 1","pages":"1793-1801"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Multimodality is often observed in practical optimization problems. Therefore, multi-modal multi-objective evolutionary algorithms (MMEA) have been developed to tackle the multimodality of these problems. However, most of the existing studies focused on population diversity in either an objective or a decision space. A double-niched evolutionary algorithm (DNEA) is a state-of-the-art MMEA that employs a niche-sharing method to improve the population in both the objective and decision spaces. However, its performance has been evaluated solely for real-coded problems and not for binary-coded ones. In this study, the performance of DNEA is evaluated on a multi-objective 0/1 knapsack problem, and the population diversity in both the objective and decision spaces is evaluated using a pure diversity measure. The experimental results suggest that DNEA is effective for multi-objective 0/1 knapsack problems to improve the decision space diversity; further, its performance is significantly affected by its control parameter, niche radius.