Adaptive step vector-based dragonfly optimization: a new deed for localizing and sizing D-STATCOM in distribution system

V. Tejaswini, D. Susitra
{"title":"Adaptive step vector-based dragonfly optimization: a new deed for localizing and sizing D-STATCOM in distribution system","authors":"V. Tejaswini, D. Susitra","doi":"10.1080/1448837X.2022.2100545","DOIUrl":null,"url":null,"abstract":"ABSTRACT In power systems, parameters such as outage of components and continual load growth may pave the way to problems like dynamic and static inconsistencies like adequacy and security consequences of disturbances. For dealing with such predicaments, deployment of Custom Power Devices is the major widely adopted approach. Anyhow, these devices must be positioned in an optimal location with setting for extracting the most possible benefits. Hence, this paper introduces an Adaptive Step vector based Dragonfly Optimisation (ASDA) to solve the location and sizing issues of D-STATCOM focusing on reactive power compensation. Moreover, the solutions are encoded with two bound constraints to deal with both the localising and sizing issues like minimisation of power loss and Voltage Stability Index (VSI).","PeriodicalId":34935,"journal":{"name":"Australian Journal of Electrical and Electronics Engineering","volume":"22 1","pages":"13 - 26"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1448837X.2022.2100545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In power systems, parameters such as outage of components and continual load growth may pave the way to problems like dynamic and static inconsistencies like adequacy and security consequences of disturbances. For dealing with such predicaments, deployment of Custom Power Devices is the major widely adopted approach. Anyhow, these devices must be positioned in an optimal location with setting for extracting the most possible benefits. Hence, this paper introduces an Adaptive Step vector based Dragonfly Optimisation (ASDA) to solve the location and sizing issues of D-STATCOM focusing on reactive power compensation. Moreover, the solutions are encoded with two bound constraints to deal with both the localising and sizing issues like minimisation of power loss and Voltage Stability Index (VSI).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应步进向量的蜻蜓优化:一种配电系统中D-STATCOM定位与定量化的新方法
在电力系统中,诸如部件停机和持续负载增长等参数可能会导致诸如动态和静态不一致之类的问题,例如干扰的充分性和安全性后果。为解决这类困境,部署自定义电源器件是被广泛采用的主要方法。无论如何,这些设备必须放置在最佳位置,并设置以提取最大可能的效益。为此,本文引入了一种基于自适应阶跃矢量的蜻蜓优化(Dragonfly optimization, ASDA)方法来解决以无功补偿为重点的D-STATCOM的定位和尺寸问题。此外,解决方案用两个约束编码,以处理定位和尺寸问题,如最小化功率损耗和电压稳定指数(VSI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Australian Journal of Electrical and Electronics Engineering
Australian Journal of Electrical and Electronics Engineering Engineering-Electrical and Electronic Engineering
CiteScore
2.30
自引率
0.00%
发文量
46
期刊介绍: Engineers Australia journal and conference papers.
期刊最新文献
Optimized sliding mode control for improved frequency response in an Islanded microgrid system Genetic fuzzy rules and hybrid QDCNN-F-DSAE for detecting attacker behavior with tuning of firewall Efficient maximum power point extraction using hybrid optimisation based parameter estimation model of solar double diode model Adaptive order and step-size differential transformation method-based power system transient stability simulation Hybrid model-based approach for oral cancer detection in distributed cloud environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1