Removing EOG artifacts from EEG signal using noise-assisted multivariate empirical mode decomposition

Sania Zahan
{"title":"Removing EOG artifacts from EEG signal using noise-assisted multivariate empirical mode decomposition","authors":"Sania Zahan","doi":"10.1109/ICECTE.2016.7879634","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) has significant applications on medical diagnosis and Brain Computer Interfacing (BCI). But the main obstacle of analyzing EEG signal is various types of noises to get actual information. Electro-oculogram (EOG) is a vital noise in EEG signal that can be produced by eye movements. De-noising EOG from EEG signal is the key issue in this research. Many research has been done on this purpose mainly Independent Component Analysis (ICA) based EOG separation with reference signal and wavelet based EOG separation. In this research, multivariate Fractional Gaussian noise channel will be used to establish a uniformly distributed reference scale and to derive the energy based threshold to detect the low frequency trends caused by EOG artifact. Avoiding these artifacts, we can get EOG free EEG hoping better results than existing methods.","PeriodicalId":6578,"journal":{"name":"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","volume":"33 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTE.2016.7879634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Electroencephalogram (EEG) has significant applications on medical diagnosis and Brain Computer Interfacing (BCI). But the main obstacle of analyzing EEG signal is various types of noises to get actual information. Electro-oculogram (EOG) is a vital noise in EEG signal that can be produced by eye movements. De-noising EOG from EEG signal is the key issue in this research. Many research has been done on this purpose mainly Independent Component Analysis (ICA) based EOG separation with reference signal and wavelet based EOG separation. In this research, multivariate Fractional Gaussian noise channel will be used to establish a uniformly distributed reference scale and to derive the energy based threshold to detect the low frequency trends caused by EOG artifact. Avoiding these artifacts, we can get EOG free EEG hoping better results than existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用噪声辅助多元经验模态分解去除脑电信号中的眼电信号伪影
脑电图(EEG)在医学诊断和脑机接口(BCI)方面有着重要的应用。但是对脑电信号进行分析的主要障碍是各种各样的噪声,难以获得真实的信息。眼电图(EOG)是眼球运动产生的脑电信号中一个重要的噪声。脑电信号去噪是本研究的关键问题。在这方面已有很多研究,主要有基于独立分量分析(ICA)的参考信号EOG分离和基于小波的EOG分离。本研究将利用多元分数阶高斯噪声信道建立均匀分布的参考尺度,并推导基于能量的阈值来检测EOG伪影引起的低频趋势。避免了这些伪影,可以得到比现有方法更好的无EOG EEG。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An investigation of SAR inside human heart for antenna directivity, surface current variations and effect on antenna frequency in presence of heart Smoothening of wind farm output fluctuations using new pitch controller Low effective material loss microstructure fiber for THz wave guidance A new machine learning approach to select adaptive IMFs of EMD Comparison of two types of graphene coated fiber optic SPR biosensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1