P. Eichelsbacher, Benedikt Rednoss, Christoph Thale, Guangqu Zheng
{"title":"A simplified second-order Gaussian Poincaré inequality in discrete setting with applications","authors":"P. Eichelsbacher, Benedikt Rednoss, Christoph Thale, Guangqu Zheng","doi":"10.1214/22-AIHP1247","DOIUrl":null,"url":null,"abstract":". In this paper, a simplified second-order Gaussian Poincaré inequality for normal approximation of functionals over infinitely many Rademacher random variables is derived. It is based on a new bound for the Kolmogorov distance between a general Rademacher functional and a Gaussian random variable, which is established by means of the discrete Malliavin-Stein method and is of independent interest. As an application, the number of vertices with prescribed degree and the subgraph counting statistic in the Erdős-Rényi random graph are discussed. The number of vertices of fixed degree is also studied for percolation on the Hamming hypercube. Moreover, the number of isolated faces in the Linial-Meshulam-Wallach random κ -complex and infinite weighted 2-runs are treated.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":"5 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-AIHP1247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2
Abstract
. In this paper, a simplified second-order Gaussian Poincaré inequality for normal approximation of functionals over infinitely many Rademacher random variables is derived. It is based on a new bound for the Kolmogorov distance between a general Rademacher functional and a Gaussian random variable, which is established by means of the discrete Malliavin-Stein method and is of independent interest. As an application, the number of vertices with prescribed degree and the subgraph counting statistic in the Erdős-Rényi random graph are discussed. The number of vertices of fixed degree is also studied for percolation on the Hamming hypercube. Moreover, the number of isolated faces in the Linial-Meshulam-Wallach random κ -complex and infinite weighted 2-runs are treated.