Microstructure characteristics of segregation zone in 17-4PH stainless steel piston rod

IF 3.1 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Iron and Steel Research(International) Pub Date : 2017-07-01 DOI:10.1016/S1006-706X(17)30108-5
Jia-long Tian , Wei Wang , Wei Yan , Zhou-hua Jiang , Yi-yin Shan , Ke Yang
{"title":"Microstructure characteristics of segregation zone in 17-4PH stainless steel piston rod","authors":"Jia-long Tian ,&nbsp;Wei Wang ,&nbsp;Wei Yan ,&nbsp;Zhou-hua Jiang ,&nbsp;Yi-yin Shan ,&nbsp;Ke Yang","doi":"10.1016/S1006-706X(17)30108-5","DOIUrl":null,"url":null,"abstract":"<div><p>The segregation of Cu and Ni in a 17-4PH stainless steel piston rod has been confirmed to be responsible for the cracking after heat treatment. Further investigation showed that the segregation zone was composed of three layers, namely the fine grain martensitic layer, the coarse grain martensitic layer and the coarse grain austenitic layer from the matrix to the crack surface. Three button ingots with the same chemical compositions as those three layers have been prepared to evaluate the grain size distribution, microstructure and mechanical properties. The effects of Cu and Ni segregation on the microstructures of those three layers have been explored by thermodynamic calculation. Based on the microstructure and mechanical properties results, an intensive understanding of the cracking in the segregation zone was therefore reached.</p></div>","PeriodicalId":64470,"journal":{"name":"Journal of Iron and Steel Research(International)","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1006-706X(17)30108-5","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research(International)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1006706X17301085","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 5

Abstract

The segregation of Cu and Ni in a 17-4PH stainless steel piston rod has been confirmed to be responsible for the cracking after heat treatment. Further investigation showed that the segregation zone was composed of three layers, namely the fine grain martensitic layer, the coarse grain martensitic layer and the coarse grain austenitic layer from the matrix to the crack surface. Three button ingots with the same chemical compositions as those three layers have been prepared to evaluate the grain size distribution, microstructure and mechanical properties. The effects of Cu and Ni segregation on the microstructures of those three layers have been explored by thermodynamic calculation. Based on the microstructure and mechanical properties results, an intensive understanding of the cracking in the segregation zone was therefore reached.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
17-4PH不锈钢活塞杆偏析区组织特征
17-4PH不锈钢活塞杆热处理后出现裂纹的原因是Cu和Ni的偏析。进一步研究表明,从基体到裂纹表面,偏析区由细晶马氏体层、粗晶马氏体层和粗晶奥氏体层三层组成。制备了3个化学成分与这3层相同的钮扣锭,对其粒度分布、显微组织和力学性能进行了评价。通过热力学计算探讨了Cu和Ni偏析对这三层微观组织的影响。基于显微组织和力学性能的结果,对偏析区开裂有了深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
2879
审稿时长
3.0 months
期刊最新文献
Influence of laser re-melting and vacuum heat treatment on plasma-sprayed FeCoCrNiAl alloy coatings Modeling deformation resistance for hot rolling based on generalized additive model Effect of solution pH, Cl− concentration and temperature on electrochemical behavior of PH13-8Mo steel in acidic environments Effects of iron compounds on pyrolysis behavior of coals and metallurgical properties of resultant cokes Effect of heat input on microstructure and mechanical properties of dissimilar joints of AISI 316L steel and API X70 high-strength low-alloy steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1