A novel covariance function for predicting vegetation biochemistry from hyperspectral imagery with Gaussian processes

Utsav B. Gewali, S. Monteiro
{"title":"A novel covariance function for predicting vegetation biochemistry from hyperspectral imagery with Gaussian processes","authors":"Utsav B. Gewali, S. Monteiro","doi":"10.1109/ICIP.2016.7532752","DOIUrl":null,"url":null,"abstract":"Remotely extracting information about the biochemical properties of the materials in an environment from airborne- or satellite-based hyperspectral sensor has a variety of applications in forestry, agriculture, mining, environmental monitoring and space exploration. In this paper, we propose a new non-stationary covariance function, called exponential spectral angle mapper (ESAM) for predicting the biochemistry of vegetation from hyperspectral imagery using Gaussian processes. The proposed covariance function is based on the angle between the spectra, which is known to be a better measure of similarity for hyperspectral data due to its robustness to illumination variations. We demonstrate the efficacy of the proposed method with experiments on a real-world hy-perspectral dataset.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"58 1","pages":"2216-2220"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Remotely extracting information about the biochemical properties of the materials in an environment from airborne- or satellite-based hyperspectral sensor has a variety of applications in forestry, agriculture, mining, environmental monitoring and space exploration. In this paper, we propose a new non-stationary covariance function, called exponential spectral angle mapper (ESAM) for predicting the biochemistry of vegetation from hyperspectral imagery using Gaussian processes. The proposed covariance function is based on the angle between the spectra, which is known to be a better measure of similarity for hyperspectral data due to its robustness to illumination variations. We demonstrate the efficacy of the proposed method with experiments on a real-world hy-perspectral dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯过程的高光谱影像植被生物化学预测新协方差函数
利用机载或卫星高光谱传感器远程提取环境中材料的生化特性信息,在林业、农业、矿业、环境监测和空间探索等领域有着广泛的应用。在本文中,我们提出了一个新的非平稳协方差函数,称为指数光谱角映射(ESAM),用于利用高斯过程预测高光谱图像中的植被生物化学。所提出的协方差函数基于光谱之间的角度,由于其对光照变化的鲁棒性,它被认为是高光谱数据相似性的更好度量。我们通过实际高光谱数据集的实验证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1