Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2024-04-01 DOI:10.3866/PKU.WHXB202305005
Xueting Feng, Ziang Shang, Rong Qin, Yunhu Han
{"title":"Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction","authors":"Xueting Feng,&nbsp;Ziang Shang,&nbsp;Rong Qin,&nbsp;Yunhu Han","doi":"10.3866/PKU.WHXB202305005","DOIUrl":null,"url":null,"abstract":"<div><div>Converting CO<sub>2</sub> into valuable carbon products can effectively address the current energy crisis and environmental issues. Electrocatalytic CO<sub>2</sub> reduction (ECR), powered by sustainable electricity, is an ideal approach to reduce carbon emissions and promote the carbon cycle. Electrocatalytic CO<sub>2</sub> reduction, powered by sustainable electricity, is an ideal approach to reduce carbon emissions and promote the carbon cycle. However, CO<sub>2</sub> is a thermodynamically inert molecule, making it challenging to obtain the desired products through ECR. Additionally, ECR involves a complex process of multi-electron and proton transfer, requiring different amounts of electrons and protons to gradually form various reduction products. This complexity highlights the urgent need to develop advanced catalysts to overcome the slow reaction kinetics and intricate coupling pathways associated with ECR. Single-atom catalysts (SACs) have emerged as a cutting-edge frontier in heterogeneous catalysis and find extensive application in ECR due to their high atom utilization, excellent activity, and selectivity. SACs defy the traditional design concept of nanoparticle catalysts and exhibit catalytic activity at the atomic level, maximizing their efficiency. Another advantage of SACs lies in their ability to tune the electronic structure of the active central atom through ligand atoms. However, while SACs provide separate metal active sites with no crosstalk between adjacent metal atoms, they do form strong chemical bonding interactions with the support. Currently, SACs for ECR still face challenges such as low selectivity and the goal of achieving high-value product generation. Therefore, optimizing the performance of SACs is of paramount importance. Considering the extensive exploration and application of SACs in the field of ECR, this review aims to summarize the research progress in SAC applications for ECR. It also addresses the challenges and prospects associated with SACs in ECR applications. Specifically, the review covers: (1) the introduction of the ECR reaction mechanism, (2) common preparation strategies for SACs, and (3) the application of SACs in novel devices based on Zn-CO<sub>2</sub> batteries. Finally, the review discusses the challenges and opportunities that SACs present in the context of ECR.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (79KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 4","pages":"Article 2305005"},"PeriodicalIF":10.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824001267","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Converting CO2 into valuable carbon products can effectively address the current energy crisis and environmental issues. Electrocatalytic CO2 reduction (ECR), powered by sustainable electricity, is an ideal approach to reduce carbon emissions and promote the carbon cycle. Electrocatalytic CO2 reduction, powered by sustainable electricity, is an ideal approach to reduce carbon emissions and promote the carbon cycle. However, CO2 is a thermodynamically inert molecule, making it challenging to obtain the desired products through ECR. Additionally, ECR involves a complex process of multi-electron and proton transfer, requiring different amounts of electrons and protons to gradually form various reduction products. This complexity highlights the urgent need to develop advanced catalysts to overcome the slow reaction kinetics and intricate coupling pathways associated with ECR. Single-atom catalysts (SACs) have emerged as a cutting-edge frontier in heterogeneous catalysis and find extensive application in ECR due to their high atom utilization, excellent activity, and selectivity. SACs defy the traditional design concept of nanoparticle catalysts and exhibit catalytic activity at the atomic level, maximizing their efficiency. Another advantage of SACs lies in their ability to tune the electronic structure of the active central atom through ligand atoms. However, while SACs provide separate metal active sites with no crosstalk between adjacent metal atoms, they do form strong chemical bonding interactions with the support. Currently, SACs for ECR still face challenges such as low selectivity and the goal of achieving high-value product generation. Therefore, optimizing the performance of SACs is of paramount importance. Considering the extensive exploration and application of SACs in the field of ECR, this review aims to summarize the research progress in SAC applications for ECR. It also addresses the challenges and prospects associated with SACs in ECR applications. Specifically, the review covers: (1) the introduction of the ECR reaction mechanism, (2) common preparation strategies for SACs, and (3) the application of SACs in novel devices based on Zn-CO2 batteries. Finally, the review discusses the challenges and opportunities that SACs present in the context of ECR.
  1. Download: Download high-res image (79KB)
  2. Download: Download full-size image
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电催化CO2还原的单原子催化剂研究进展
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar–driven antibiotics photodegradation Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity Efficient capacitive desalination over NCQDs decorated FeOOH composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1