Capillary Absorption and Chloride Penetration into High-Performance Fiber-Reinforced Cement-Based Composites (HPFRCC) as Influenced by Tensile Stress and Self-Healing

F. Wittmann, Penggang Wang, Peng Zhang, T. Zhao
{"title":"Capillary Absorption and Chloride Penetration into High-Performance Fiber-Reinforced Cement-Based Composites (HPFRCC) as Influenced by Tensile Stress and Self-Healing","authors":"F. Wittmann, Penggang Wang, Peng Zhang, T. Zhao","doi":"10.1515/rbm-2015-0009","DOIUrl":null,"url":null,"abstract":"Abstract High-performance fiber-reinforced cement-based composites (HPFRCC) can be characterized by low porosity and fine pores as compared to normal concrete and therefore this interesting material absorbs little water or aqueous salt solutions if exposed to aggressive environment. These properties are indications for excellent durability and long service life of structural members or structures made with this high-performance material. In practice, however, most structures and structural elements are designed to be load bearing. The influence of an applied tensile stress on capillary absorption was investigated and results are presented in this contribution. It was found that the coefficient of capillary absorption increases rapidly if a tensile stress exceeding half of the tensile strength is applied. This observation has to be taken into consideration if HPFRCC is to be applied in aggressive environment. The maximum admissible stress must be reduced accordingly.","PeriodicalId":20957,"journal":{"name":"Restoration of Buildings and Monuments","volume":"88 1","pages":"75 - 80"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restoration of Buildings and Monuments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rbm-2015-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract High-performance fiber-reinforced cement-based composites (HPFRCC) can be characterized by low porosity and fine pores as compared to normal concrete and therefore this interesting material absorbs little water or aqueous salt solutions if exposed to aggressive environment. These properties are indications for excellent durability and long service life of structural members or structures made with this high-performance material. In practice, however, most structures and structural elements are designed to be load bearing. The influence of an applied tensile stress on capillary absorption was investigated and results are presented in this contribution. It was found that the coefficient of capillary absorption increases rapidly if a tensile stress exceeding half of the tensile strength is applied. This observation has to be taken into consideration if HPFRCC is to be applied in aggressive environment. The maximum admissible stress must be reduced accordingly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拉伸应力和自愈对高性能纤维增强水泥基复合材料(HPFRCC)毛细吸收和氯化物渗透的影响
高性能纤维增强水泥基复合材料(HPFRCC)与普通混凝土相比,具有低孔隙率和细孔隙的特点,因此这种有趣的材料在暴露于腐蚀性环境时几乎不吸收水或含水盐溶液。这些性能表明,这种高性能材料制成的结构构件或结构具有优异的耐久性和较长的使用寿命。然而,在实践中,大多数结构和结构元件被设计为承重。研究了施加拉应力对毛细吸收的影响,并给出了结果。结果表明,当拉伸应力超过拉伸强度的一半时,毛细吸收系数迅速增大。如果HPFRCC应用于侵略性环境,则必须考虑到这一观察结果。最大允许应力必须相应降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative Analysis of Historic Mortars by Digital Image Analysis of Thin Sections Twelve Years of Energy Efficiency in Historic Buildings in Sweden Valuation of Medieval Churches; Taking Account of Laypersons’ Views Building Performance Evaluation – A Design Approach for Refurbishment of a Small Traditional Building in Scotland Guidance for Finding a Sustainable Balance between Energy Savings and Heritage Preservation When Retrofitting Heritage Buildings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1