{"title":"The role of reactive oxygen species in screening anticancer agents","authors":"Xiaohui Xu, Zi-long Dang, Taoli Sun, Shengping Zhang, Hongyan Zhang","doi":"10.4103/ctm.ctm_6_18","DOIUrl":null,"url":null,"abstract":"Development of anticancer agents with high efficacy and low toxicity has always been a challenge in cancer therapeutics. Reactive oxygen species (ROS) are one of the most important physiological stimuli and have been correlated with several cancer conditions. Cancer cells adapt to new higher ROS environment. Meanwhile, elevated ROS render cancer cells vulnerable to oxidative stress-induced cell death. Anticancer drugs are involved in inhibiting and suppressing cancer progression through ROS-mediated cell death. Thus, it is useful to study the level of ROS generated by anticancer agents in cancer cells, while sparing the normal cells, which is one of the target methods to study the pharmacological properties of anticancer agents. In this review, we discuss the relation between ROS and anticancer agents, as well as the application of ROS in anticancer agents' activity screening.","PeriodicalId":9428,"journal":{"name":"Cancer Translational Medicine","volume":"43 1","pages":"35 - 38"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Translational Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/ctm.ctm_6_18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Development of anticancer agents with high efficacy and low toxicity has always been a challenge in cancer therapeutics. Reactive oxygen species (ROS) are one of the most important physiological stimuli and have been correlated with several cancer conditions. Cancer cells adapt to new higher ROS environment. Meanwhile, elevated ROS render cancer cells vulnerable to oxidative stress-induced cell death. Anticancer drugs are involved in inhibiting and suppressing cancer progression through ROS-mediated cell death. Thus, it is useful to study the level of ROS generated by anticancer agents in cancer cells, while sparing the normal cells, which is one of the target methods to study the pharmacological properties of anticancer agents. In this review, we discuss the relation between ROS and anticancer agents, as well as the application of ROS in anticancer agents' activity screening.