Non-Adaptive Proper Learning Polynomials

N. Bshouty
{"title":"Non-Adaptive Proper Learning Polynomials","authors":"N. Bshouty","doi":"10.4230/LIPIcs.STACS.2023.16","DOIUrl":null,"url":null,"abstract":"We give the first polynomial-time non-adaptive proper learning algorithm of Boolean sparse multivariate polynomial under the uniform distribution. Our algorithm, for s -sparse polynomial over n variables, makes q = ( s/ϵ ) γ ( s,ϵ ) log n queries where 2 . 66 ≤ γ ( s, ϵ ) ≤ 6 . 922 and runs in ˜ O ( n ) · poly ( s, 1 /ϵ ) time. We also show that for any ϵ = 1 /s O (1) any non-adaptive learning algorithm must make at least ( s/ϵ ) Ω(1) log n queries. Therefore, the query complexity of our algorithm is also polynomial in the optimal query complexity and optimal in n .","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.STACS.2023.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We give the first polynomial-time non-adaptive proper learning algorithm of Boolean sparse multivariate polynomial under the uniform distribution. Our algorithm, for s -sparse polynomial over n variables, makes q = ( s/ϵ ) γ ( s,ϵ ) log n queries where 2 . 66 ≤ γ ( s, ϵ ) ≤ 6 . 922 and runs in ˜ O ( n ) · poly ( s, 1 /ϵ ) time. We also show that for any ϵ = 1 /s O (1) any non-adaptive learning algorithm must make at least ( s/ϵ ) Ω(1) log n queries. Therefore, the query complexity of our algorithm is also polynomial in the optimal query complexity and optimal in n .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非自适应适当学习多项式
给出了布尔稀疏多元多项式在均匀分布下的第一个多项式时间非自适应适当学习算法。我们的算法,对于n个变量上的s -稀疏多项式,使q = (s/ λ) γ (s, λ) log n个查询,其中2。66≤γ (s, λ)≤6。922,运行时间为~ O (n)·poly (s, 1 / ε)。我们还表明,对于任何一个λ = 1 /s O(1),任何非自适应学习算法必须至少进行(s/ λ) Ω(1) log n次查询。因此,我们算法的查询复杂度在最优查询复杂度中也是多项式,在n中也是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dependency schemes in CDCL-based QBF solving: a proof-theoretic study On blocky ranks of matrices Fractional Linear Matroid Matching is in quasi-NC Aaronson-Ambainis Conjecture Is True For Random Restrictions Optimal Pseudorandom Generators for Low-Degree Polynomials Over Moderately Large Fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1