Compiling Algorithms for Heterogeneous Systems

Steven Bell, Jing Pu, James Hegarty, M. Horowitz
{"title":"Compiling Algorithms for Heterogeneous Systems","authors":"Steven Bell, Jing Pu, James Hegarty, M. Horowitz","doi":"10.2200/S00816ED1V01Y201711CAC043","DOIUrl":null,"url":null,"abstract":"Abstract Most emerging applications in imaging and machine learning must perform immense amounts of computation while holding to strict limits on energy and power. To meet these goals, architects are building increasingly specialized compute engines tailored for these specific tasks. The resulting computer systems are heterogeneous, containing multiple processing cores with wildly different execution models. Unfortunately, the cost of producing this specialized hardware—and the software to control it—is astronomical. Moreover, the task of porting algorithms to these heterogeneous machines typically requires that the algorithm be partitioned across the machine and rewritten for each specific architecture, which is time consuming and prone to error. Over the last several years, the authors have approached this problem using domain-specific languages (DSLs): high-level programming languages customized for specific domains, such as database manipulation, machine learning, or image processing. By giving up gen...","PeriodicalId":22115,"journal":{"name":"Synthesis Lectures on Computer Architecture","volume":"77 1","pages":"1-105"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis Lectures on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2200/S00816ED1V01Y201711CAC043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Most emerging applications in imaging and machine learning must perform immense amounts of computation while holding to strict limits on energy and power. To meet these goals, architects are building increasingly specialized compute engines tailored for these specific tasks. The resulting computer systems are heterogeneous, containing multiple processing cores with wildly different execution models. Unfortunately, the cost of producing this specialized hardware—and the software to control it—is astronomical. Moreover, the task of porting algorithms to these heterogeneous machines typically requires that the algorithm be partitioned across the machine and rewritten for each specific architecture, which is time consuming and prone to error. Over the last several years, the authors have approached this problem using domain-specific languages (DSLs): high-level programming languages customized for specific domains, such as database manipulation, machine learning, or image processing. By giving up gen...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异构系统的编译算法
大多数新兴的成像和机器学习应用必须执行大量的计算,同时严格限制能量和功率。为了实现这些目标,架构师正在为这些特定的任务构建越来越专门的计算引擎。由此产生的计算机系统是异构的,包含具有完全不同执行模型的多个处理核心。不幸的是,生产这种专用硬件和控制它的软件的成本是天文数字。此外,将算法移植到这些异构机器上的任务通常需要跨机器对算法进行分区,并为每个特定的体系结构重写算法,这既耗时又容易出错。在过去的几年中,作者使用领域特定语言(dsl)来解决这个问题:为特定领域定制的高级编程语言,例如数据库操作、机器学习或图像处理。通过放弃gen…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
On Architecting Fully Homomorphic Encryption-based Computing Systems A Primer on Memory Persistency In-/Near-Memory Computing Robotic Computing on FPGAs AI for Computer Architecture: Principles, Practice, and Prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1