{"title":"Detection of COVID-19 Disease in Chest X-Ray Images with capsul networks: application with cloud computing","authors":"B. Aksoy, O. Salman","doi":"10.1080/0952813X.2021.1908431","DOIUrl":null,"url":null,"abstract":"ABSTRACT Today, health is the most important value of human life pandemics at different time intervals in the world history. Finally, the COVID-19 outbreak that occurred in Wuhan, China in December 2019, spread to the whole world in a really short time and caused a pandemic. In order to prevent this pandemic, early detection of the COVID-19 is very important. In this study, chest x-ray images of 1019 patients with open-source dataset were taken from four different sources. The images were analysed using Capsule Networks (CapsNet) model, which is one of the deep learning methods, whose popularity has increased in recent years. With the designed CapsNet model, individuals with COVID-19 disease were tried to be identified. The designed CapsNet model can detect COVID-19 disease with an accuracy rate of 98.02%. The obtained model cloud computing application was developed in order to use the work performed faster and easier.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"14 1","pages":"527 - 541"},"PeriodicalIF":1.7000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2021.1908431","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6
Abstract
ABSTRACT Today, health is the most important value of human life pandemics at different time intervals in the world history. Finally, the COVID-19 outbreak that occurred in Wuhan, China in December 2019, spread to the whole world in a really short time and caused a pandemic. In order to prevent this pandemic, early detection of the COVID-19 is very important. In this study, chest x-ray images of 1019 patients with open-source dataset were taken from four different sources. The images were analysed using Capsule Networks (CapsNet) model, which is one of the deep learning methods, whose popularity has increased in recent years. With the designed CapsNet model, individuals with COVID-19 disease were tried to be identified. The designed CapsNet model can detect COVID-19 disease with an accuracy rate of 98.02%. The obtained model cloud computing application was developed in order to use the work performed faster and easier.
期刊介绍:
Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research.
The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following:
• cognitive science
• games
• learning
• knowledge representation
• memory and neural system modelling
• perception
• problem-solving