David S. Taylor, A. Pearson, Lindsey M. Glenn, Kara S Orr, S. Tersey, D. Taylor-Fishwick
{"title":"Small molecule inhibition of NOX-1 reduces diabetes conversion in NOD mice","authors":"David S. Taylor, A. Pearson, Lindsey M. Glenn, Kara S Orr, S. Tersey, D. Taylor-Fishwick","doi":"10.15761/imm.1000367","DOIUrl":null,"url":null,"abstract":"Inflammation is a major contributor to beta cell destruction leading to diabetes. Generation of reactive oxygen species (ROS) by inflammatory signals facilitates beta cell dysfunction. Disruption of the ROS-generating enzyme NADPH oxidase-1 (NOX-1) confers protection to beta cells. Selective small molecule inhibitors of NOX-1 that confer protection to mouse or human beta cells (ML171 or GKT137831) have been systemically administered to NOD mice. A brief (4 week) administration of the NOX-1 inhibitors reduced the conversion of NOD mice to diabetes, relative to vehicle control. Histologic analysis of islet morphology showed mice administered the NOX-1 inhibitors had a predominant organization of leukocytes that was restricted to the peri-islet region, in contrast to leukocyte invasion of the islet that was predominantly seen in vehicle control mice. The data support the therapeutic potential of NOX-1 inhibition in diabetes and suggest a role for NOX-1 in the cross talk between inflammatory cells, beta cells and the integrity of the islet extracellular matrix.","PeriodicalId":94322,"journal":{"name":"Integrative molecular medicine","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15761/imm.1000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Inflammation is a major contributor to beta cell destruction leading to diabetes. Generation of reactive oxygen species (ROS) by inflammatory signals facilitates beta cell dysfunction. Disruption of the ROS-generating enzyme NADPH oxidase-1 (NOX-1) confers protection to beta cells. Selective small molecule inhibitors of NOX-1 that confer protection to mouse or human beta cells (ML171 or GKT137831) have been systemically administered to NOD mice. A brief (4 week) administration of the NOX-1 inhibitors reduced the conversion of NOD mice to diabetes, relative to vehicle control. Histologic analysis of islet morphology showed mice administered the NOX-1 inhibitors had a predominant organization of leukocytes that was restricted to the peri-islet region, in contrast to leukocyte invasion of the islet that was predominantly seen in vehicle control mice. The data support the therapeutic potential of NOX-1 inhibition in diabetes and suggest a role for NOX-1 in the cross talk between inflammatory cells, beta cells and the integrity of the islet extracellular matrix.