Dongqing Tian, Li Shi, Libin Sun, Keya Shen, Kun Xu
{"title":"Experimental Study on Dynamic Tensile Strength of Graphite","authors":"Dongqing Tian, Li Shi, Libin Sun, Keya Shen, Kun Xu","doi":"10.1115/icone29-90670","DOIUrl":null,"url":null,"abstract":"\n Dynamic tensile strength is an important parameter in the design of graphite components for High Temperature Gas-Cooled Reactors (HTGR) to evaluate the integrity of core support structures. The Digital Image Correlation and Split Hopkinson Pressure Bar (DIC-SHPB) test system was used to perform the disc compression tests according to ASTM D8289-20 to study the dynamic splitting tensile strengths of graphites with different grain sizes. The fracture process was captured by a high-speed camera and the tensile strain was computed by DIC. The results show that the SHPB test method is capable of performing the disc compression tests of graphite. The dynamic tensile stress-strain curve of graphite underwent four stages: compression stage, near-elastic stage, crack development stage and crack non-stable extension stage. When the strain rate is in the range of 330 s−1 to 630 s−1, the dynamic tensile strength of graphite increases with increasing strain rate. The dynamic increase factor (DIF) of fine-grained graphite ranged from 1.05 to 1.2, while that of coarse-grained graphite was about 1.2 to 1.6. There is a large dispersion in the dynamic tensile strength of graphite when the strain rate is increased. It was found that the tensile strength of graphite improved considerably with increasing strain rate, while the fracture strain decreased slightly.","PeriodicalId":36762,"journal":{"name":"Journal of Nuclear Fuel Cycle and Waste Technology","volume":"3 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Fuel Cycle and Waste Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-90670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic tensile strength is an important parameter in the design of graphite components for High Temperature Gas-Cooled Reactors (HTGR) to evaluate the integrity of core support structures. The Digital Image Correlation and Split Hopkinson Pressure Bar (DIC-SHPB) test system was used to perform the disc compression tests according to ASTM D8289-20 to study the dynamic splitting tensile strengths of graphites with different grain sizes. The fracture process was captured by a high-speed camera and the tensile strain was computed by DIC. The results show that the SHPB test method is capable of performing the disc compression tests of graphite. The dynamic tensile stress-strain curve of graphite underwent four stages: compression stage, near-elastic stage, crack development stage and crack non-stable extension stage. When the strain rate is in the range of 330 s−1 to 630 s−1, the dynamic tensile strength of graphite increases with increasing strain rate. The dynamic increase factor (DIF) of fine-grained graphite ranged from 1.05 to 1.2, while that of coarse-grained graphite was about 1.2 to 1.6. There is a large dispersion in the dynamic tensile strength of graphite when the strain rate is increased. It was found that the tensile strength of graphite improved considerably with increasing strain rate, while the fracture strain decreased slightly.