Physical, Mechanical and Thermal Behaviour of High Entropy Materials

IF 0.6 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Annales De Chimie-science Des Materiaux Pub Date : 2020-05-08 DOI:10.18280/acsm.440208
Piyush Sharma, S. Dwivedi, V. Dwivedi
{"title":"Physical, Mechanical and Thermal Behaviour of High Entropy Materials","authors":"Piyush Sharma, S. Dwivedi, V. Dwivedi","doi":"10.18280/acsm.440208","DOIUrl":null,"url":null,"abstract":"Received: 5 Decemebr 2019 Accepted: 19 February 2020 High-entropy alloys (HEAs) are alloys that are formed by mixing equal or relatively large proportions of (usually) five or more elements. Development of high entropy material is one of the biggest challenging areas in materials and design. However, high entropy materials exhibit very good mechanical properties. In the present investigation, an attempt was made to develop high entropy material by simple casting technique using Cr, Mn, Fe, Al and Ni with equal weight percent. Squeeze pressure was applied on developed Cr0.20Mn0.20Fe0.20Al0.20Ni0.20 high entropy alloy to eliminate porosity and improve the grain structure. Microstructure image of Cr0.20Mn0.20Fe0.20Al0.20Ni0.20 showed fair interfacial bonding between the alloys after squeeze pressure. Tensile strength, hardness was significantly improved of developed high entropy material. Physical and thermal behaviour such as corrosion loss and material sustainability were also observed to see the effect of different alloys interfacial reaction layer.","PeriodicalId":7897,"journal":{"name":"Annales De Chimie-science Des Materiaux","volume":"26 1","pages":"127-132"},"PeriodicalIF":0.6000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Chimie-science Des Materiaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.440208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Received: 5 Decemebr 2019 Accepted: 19 February 2020 High-entropy alloys (HEAs) are alloys that are formed by mixing equal or relatively large proportions of (usually) five or more elements. Development of high entropy material is one of the biggest challenging areas in materials and design. However, high entropy materials exhibit very good mechanical properties. In the present investigation, an attempt was made to develop high entropy material by simple casting technique using Cr, Mn, Fe, Al and Ni with equal weight percent. Squeeze pressure was applied on developed Cr0.20Mn0.20Fe0.20Al0.20Ni0.20 high entropy alloy to eliminate porosity and improve the grain structure. Microstructure image of Cr0.20Mn0.20Fe0.20Al0.20Ni0.20 showed fair interfacial bonding between the alloys after squeeze pressure. Tensile strength, hardness was significantly improved of developed high entropy material. Physical and thermal behaviour such as corrosion loss and material sustainability were also observed to see the effect of different alloys interfacial reaction layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高熵材料的物理、机械和热行为
高熵合金(HEAs)是由(通常)五种或更多种元素的等量或相对较大比例混合而成的合金。高熵材料的开发是材料和设计领域最大的挑战之一。然而,高熵材料表现出非常好的力学性能。本研究尝试用等量含量的Cr、Mn、Fe、Al和Ni,通过简单铸造技术制备高熵材料。对制备好的Cr0.20Mn0.20Fe0.20Al0.20Ni0.20高熵合金施加挤压压力,消除气孔,改善晶粒组织。Cr0.20Mn0.20Fe0.20Al0.20Ni0.20的显微组织图像显示,挤压后合金间界面结合良好。研制的高熵材料的抗拉强度、硬度均有显著提高。此外,还观察了不同合金界面反应层对腐蚀损失和材料可持续性等物理和热行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annales De Chimie-science Des Materiaux
Annales De Chimie-science Des Materiaux 工程技术-材料科学:综合
CiteScore
1.70
自引率
25.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: The ACSM is concerning the cutting-edge innovations in solid material science. The journal covers a broad spectrum of scientific fields, ranging all the way from metallurgy, semiconductors, solid mineral compounds, organic macromolecular compounds to composite materials. The editorial board encourages the submission of original papers that deal with all aspects of material science, including but not limited to synthesis and processing, property characterization, reactivity and reaction kinetics, evolution in service, and recycling. The papers should provide new insights into solid materials and make a significant original contribution to knowledge.
期刊最新文献
Mechanical and Thermal Characteristics of Concrete Reinforced with Crushed Glass and Glass Fiber: An Experimental Study Structural Performance of Reinforced Concrete Columns with Bracing Reinforcement Elevated Temperature Effects on Geo-Polymer Concrete: An Experimental and Numerical-Review Study Investigating the Mechanical and Thermal Properties of Concrete with Recycled Nanoplastics for Enhanced Sustainability Experimental Investigation on Using Electrical Cable Waste as Fine Aggregate and Reinforcing Fiber in Sustainable Mortar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1