C. Yeo, I. Watson, D. Stewart-Tull, A. Wardlaw, G. Armstrong
{"title":"Bactericidal effects of high-power Nd:YAG laser radiation on Staphylococcus aureus","authors":"C. Yeo, I. Watson, D. Stewart-Tull, A. Wardlaw, G. Armstrong","doi":"10.1088/0963-9659/7/3/020","DOIUrl":null,"url":null,"abstract":"The effect of laser radiation on Staphylococcus aureus 6571 (Oxford strain) was studied with high-power Nd:YAG laser radiation between 50 and 300 W. A range of laser pulse repetition frequencies (PRF) from 5 to 30 Hz, with a combination of pulse energies from 2 to 30 J were applied; this covered a range of energy densities from 800 to . The area of inactivation of S. aureus, lawned on nutrient agar plates, was quantified as a function of energy density and exposure time. The shortest exposure time which produced an area of inactivation equal to 50% of the beam area was achieved at a PRF of 30 Hz, pulse energy of 10 J, and with an exposure time of 10.75 s; this was equivalent to an applied energy density of . No bacterial inactivation was observed at relatively low-power settings for PRF, pulse energies and exposure time of: 20 Hz, 3 J and 34 s; 25 Hz, 2 J and 45 s and 30 Hz, 2 J and 35 s, respectively. These results shows that pulse energy, PRF and exposure time are important criteria when considering inactivation of micro-organisms by laser radiation.","PeriodicalId":20787,"journal":{"name":"Pure and Applied Optics: Journal of The European Optical Society Part A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Optics: Journal of The European Optical Society Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0963-9659/7/3/020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The effect of laser radiation on Staphylococcus aureus 6571 (Oxford strain) was studied with high-power Nd:YAG laser radiation between 50 and 300 W. A range of laser pulse repetition frequencies (PRF) from 5 to 30 Hz, with a combination of pulse energies from 2 to 30 J were applied; this covered a range of energy densities from 800 to . The area of inactivation of S. aureus, lawned on nutrient agar plates, was quantified as a function of energy density and exposure time. The shortest exposure time which produced an area of inactivation equal to 50% of the beam area was achieved at a PRF of 30 Hz, pulse energy of 10 J, and with an exposure time of 10.75 s; this was equivalent to an applied energy density of . No bacterial inactivation was observed at relatively low-power settings for PRF, pulse energies and exposure time of: 20 Hz, 3 J and 34 s; 25 Hz, 2 J and 45 s and 30 Hz, 2 J and 35 s, respectively. These results shows that pulse energy, PRF and exposure time are important criteria when considering inactivation of micro-organisms by laser radiation.