Building up Cyber Resilience by Better Grasping Cyber Risk Via a New Algorithm for Modelling Heavy-Tailed Data

M. Dacorogna, Nehla Debbabi, M. Kratz
{"title":"Building up Cyber Resilience by Better Grasping Cyber Risk Via a New Algorithm for Modelling Heavy-Tailed Data","authors":"M. Dacorogna, Nehla Debbabi, M. Kratz","doi":"10.48550/arXiv.2209.02845","DOIUrl":null,"url":null,"abstract":"Cyber security and resilience are major challenges in our modern economies; this is why they are top priorities on the agenda of governments, security and defense forces, management of companies and organizations. Hence, the need of a deep understanding of cyber risks to improve resilience. We propose here an analysis of the database of the cyber complaints filed at the {\\it Gendarmerie Nationale}. We perform this analysis with a new algorithm developed for non-negative asymmetric heavy-tailed data, which could become a handy tool in applied fields. This method gives a good estimation of the full distribution including the tail. Our study confirms the finiteness of the loss expectation, necessary condition for insurability. Finally, we draw the consequences of this model for risk management, compare its results to other standard EVT models, and lay the ground for a classification of attacks based on the fatness of the tail.","PeriodicalId":11868,"journal":{"name":"Eur. J. Oper. Res.","volume":"1 1","pages":"708-729"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eur. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.02845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Cyber security and resilience are major challenges in our modern economies; this is why they are top priorities on the agenda of governments, security and defense forces, management of companies and organizations. Hence, the need of a deep understanding of cyber risks to improve resilience. We propose here an analysis of the database of the cyber complaints filed at the {\it Gendarmerie Nationale}. We perform this analysis with a new algorithm developed for non-negative asymmetric heavy-tailed data, which could become a handy tool in applied fields. This method gives a good estimation of the full distribution including the tail. Our study confirms the finiteness of the loss expectation, necessary condition for insurability. Finally, we draw the consequences of this model for risk management, compare its results to other standard EVT models, and lay the ground for a classification of attacks based on the fatness of the tail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过重尾数据建模新算法更好地把握网络风险,构建网络弹性
网络安全和弹性是现代经济面临的主要挑战;这就是为什么它们是政府、安全和国防部队、公司和组织管理的首要任务。因此,需要深入了解网络风险,以提高弹性。我们在此建议对{\it宪兵队国家}提交的网络投诉数据库进行分析。我们采用了一种新的非负非对称重尾数据分析算法,该算法可以成为应用领域的一个方便工具。该方法能很好地估计包括尾部在内的整个分布。我们的研究证实了损失预期的有限性,这是保险的必要条件。最后,我们得出了该模型对风险管理的影响,将其结果与其他标准EVT模型进行了比较,并为基于尾部丰满度的攻击分类奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Risk budgeting portfolios from simulations Demand management for attended home delivery - A literature review Dynamic scheduling with uncertain job types A choice-based optimization approach for contracting in supply chains How to preempt attacks in multi-front conflict with limited resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1