Remote Activated Completion Technology Enhances Operational Efficiency of Offshore Wells in Middle East

V. Keerthivasan, D. Young, Cathrine Mehus, Bjørnar Gjedrem, Moetaz Abdelghany, Henry Khov
{"title":"Remote Activated Completion Technology Enhances Operational Efficiency of Offshore Wells in Middle East","authors":"V. Keerthivasan, D. Young, Cathrine Mehus, Bjørnar Gjedrem, Moetaz Abdelghany, Henry Khov","doi":"10.2118/204867-ms","DOIUrl":null,"url":null,"abstract":"\n To access a larger amount of pay zone, well trajectories are becoming longer and more complex, creating greater challenges for running completion liners. A liner shoe is a casing accessory tool that aids in the running of completion liners in long wells by allowing auto-filling of the liner and enabling pumping through the bottom of the liner. Upon reaching planned liner depth, the liner shoe is closed to allow for pressure testing and subsequent completion operations. Conventional methods used to close a liner shoe involve well intervention to set plugs or by dropping a ball, and there are inherent costs and risks associated with these operations. This paper presents the development and deployment of a remotely activated electronic liner shoe (ELS) for offshore applications that enables interventionless closing of the liner shoe, thereby improving operational efficiency, and reducing potential operational issues that could occur while closing the liner shoe conventionally. The ELS allows the operator to precisely control when the liner shoe closes – either based on pre-programmed pressure signals, a timer, or a combination of the two. A major operator in the Middle East required an ELS to be developed and qualified specifically for their offshore well conditions. A new technology qualification program was devised in collaboration with the operator to qualify both the electronic and mechanical functionalities of the tool.\n This paper documents the methods and results of the extensive qualification test program. The development and qualification process were successfully completed within 10 months at research and development facilities in Norway. Following qualification testing, the ELS was first deployed for the operator in an offshore well in Q4 of 2019. Operational considerations in programming the remote functionality of the tool is presented in this paper. After a successful field trial, the ELS has been run in more than 15 offshore wells and has become the standard option in the operator's completion program.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204867-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To access a larger amount of pay zone, well trajectories are becoming longer and more complex, creating greater challenges for running completion liners. A liner shoe is a casing accessory tool that aids in the running of completion liners in long wells by allowing auto-filling of the liner and enabling pumping through the bottom of the liner. Upon reaching planned liner depth, the liner shoe is closed to allow for pressure testing and subsequent completion operations. Conventional methods used to close a liner shoe involve well intervention to set plugs or by dropping a ball, and there are inherent costs and risks associated with these operations. This paper presents the development and deployment of a remotely activated electronic liner shoe (ELS) for offshore applications that enables interventionless closing of the liner shoe, thereby improving operational efficiency, and reducing potential operational issues that could occur while closing the liner shoe conventionally. The ELS allows the operator to precisely control when the liner shoe closes – either based on pre-programmed pressure signals, a timer, or a combination of the two. A major operator in the Middle East required an ELS to be developed and qualified specifically for their offshore well conditions. A new technology qualification program was devised in collaboration with the operator to qualify both the electronic and mechanical functionalities of the tool. This paper documents the methods and results of the extensive qualification test program. The development and qualification process were successfully completed within 10 months at research and development facilities in Norway. Following qualification testing, the ELS was first deployed for the operator in an offshore well in Q4 of 2019. Operational considerations in programming the remote functionality of the tool is presented in this paper. After a successful field trial, the ELS has been run in more than 15 offshore wells and has become the standard option in the operator's completion program.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
远程激活完井技术提高中东海上油井作业效率
为了进入更大的产层,井眼轨迹变得越来越长、越来越复杂,这给完井尾管的下入带来了更大的挑战。尾管鞋是一种套管附件工具,通过自动填充尾管并通过尾管底部进行泵送,有助于长井完井尾管的下入。当尾管到达预定深度后,关闭尾管鞋,进行压力测试和后续完井作业。常规关闭尾管鞋的方法包括修井、坐封桥塞或投球,这些操作存在固有的成本和风险。本文介绍了一种用于海上应用的远程激活电子尾管鞋(ELS)的开发和部署,可以实现无干预关闭尾管鞋,从而提高作业效率,并减少常规关闭尾管鞋时可能出现的潜在操作问题。ELS允许操作人员根据预编程的压力信号、计时器或两者的组合,精确控制尾管鞋何时关闭。中东地区的一家大型作业者要求针对其海上井况专门开发和认证一种ELS。与作业者合作设计了一套新的技术鉴定程序,对工具的电子和机械功能进行了鉴定。本文记录了广泛的鉴定测试程序的方法和结果。在挪威的研究和开发设施中,开发和认证过程在10个月内成功完成。经过资格测试后,ELS于2019年第四季度首次为运营商在一口海上井中部署。本文介绍了工具远程功能编程中的操作注意事项。经过成功的现场试验,ELS已在超过15口海上井中运行,并已成为作业者完井计划的标准选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large Scale Placement For Multilateral Wells Using Network Optimization How to Make Sensitive Formations Produce Oil: Case Study of the Complex Laboratory Approach to Stimulation Fluid Optimization Novel Analytical Solution and Type-Curves for Lost-Circulation Diagnostics of Drilling Mud in Fractured Formation A Novel Workflow for Geosteering a Horizontal Well in a Low Resistivity Contrast Anisotropic Environment: A Case Study in Semoga Field, Indonesia Uncertainty Quantification and Optimization of Deep Learning for Fracture Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1