J. Arbel, G. Kon Kam King, A. Lijoi, L. Nieto-Barajas, I. Prünster
{"title":"BNPdensity: Bayesian nonparametric mixture modelling in R","authors":"J. Arbel, G. Kon Kam King, A. Lijoi, L. Nieto-Barajas, I. Prünster","doi":"10.1111/anzs.12342","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Robust statistical data modelling under potential model mis-specification often requires leaving the parametric world for the nonparametric. In the latter, parameters are infinite dimensional objects such as functions, probability distributions or infinite vectors. In the Bayesian nonparametric approach, prior distributions are designed for these parameters, which provide a handle to manage the complexity of nonparametric models in practice. However, most modern Bayesian nonparametric models seem often out of reach to practitioners, as inference algorithms need careful design to deal with the infinite number of parameters. The aim of this work is to facilitate the journey by providing computational tools for Bayesian nonparametric inference. The article describes a set of functions available in the <span>R</span> package <span>BNPdensity</span> in order to carry out density estimation with an infinite mixture model, including all types of censored data. The package provides access to a large class of such models based on normalised random measures, which represent a generalisation of the popular Dirichlet process mixture. One striking advantage of this generalisation is that it offers much more robust priors on the number of clusters than the Dirichlet. Another crucial advantage is the complete flexibility in specifying the prior for the scale and location parameters of the clusters, because conjugacy is not required. Inference is performed using a theoretically grounded approximate sampling methodology known as the Ferguson & Klass algorithm. The package also offers several goodness-of-fit diagnostics such as QQ plots, including a cross-validation criterion, the conditional predictive ordinate. The proposed methodology is illustrated on a classical ecological risk assessment method called the species sensitivity distribution problem, showcasing the benefits of the Bayesian nonparametric framework.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"63 3","pages":"542-564"},"PeriodicalIF":0.8000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12342","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Robust statistical data modelling under potential model mis-specification often requires leaving the parametric world for the nonparametric. In the latter, parameters are infinite dimensional objects such as functions, probability distributions or infinite vectors. In the Bayesian nonparametric approach, prior distributions are designed for these parameters, which provide a handle to manage the complexity of nonparametric models in practice. However, most modern Bayesian nonparametric models seem often out of reach to practitioners, as inference algorithms need careful design to deal with the infinite number of parameters. The aim of this work is to facilitate the journey by providing computational tools for Bayesian nonparametric inference. The article describes a set of functions available in the R package BNPdensity in order to carry out density estimation with an infinite mixture model, including all types of censored data. The package provides access to a large class of such models based on normalised random measures, which represent a generalisation of the popular Dirichlet process mixture. One striking advantage of this generalisation is that it offers much more robust priors on the number of clusters than the Dirichlet. Another crucial advantage is the complete flexibility in specifying the prior for the scale and location parameters of the clusters, because conjugacy is not required. Inference is performed using a theoretically grounded approximate sampling methodology known as the Ferguson & Klass algorithm. The package also offers several goodness-of-fit diagnostics such as QQ plots, including a cross-validation criterion, the conditional predictive ordinate. The proposed methodology is illustrated on a classical ecological risk assessment method called the species sensitivity distribution problem, showcasing the benefits of the Bayesian nonparametric framework.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.