A Modified Algorithm for the Computation of the Covariance Matrix Implied by a Structural Recursive Model with Latent Variables Using the Finite Iterative Method

M’barek Iaousse, Amal Hmimou, Zouhair El Hadri, Yousfi El Kettani
{"title":"A Modified Algorithm for the Computation of the Covariance Matrix Implied by a Structural Recursive Model with Latent Variables Using the Finite Iterative Method","authors":"M’barek Iaousse, Amal Hmimou, Zouhair El Hadri, Yousfi El Kettani","doi":"10.19139/soic-2310-5070-937","DOIUrl":null,"url":null,"abstract":"Structural Equation Modeling (SEM) is a statistical technique that assesses a hypothesized causal model byshowing whether or not, it fits the available data. One of the major steps in SEM is the computation of the covariance matrix implied by the specified model. This matrix is crucial in estimating the parameters, testing the validity of the model and, make useful interpretations. In the present paper, two methods used for this purpose are presented: the J¨oreskog’s formula and the finite iterative method. These methods are characterized by the manner of the computation and based on some apriori assumptions. To make the computation more simplistic and the assumptions less restrictive, a new algorithm for the computation of the implied covariance matrix is introduced. It consists of a modification of the finite iterative method. An illustrative example of the proposed method is presented. Furthermore, theoretical and numerical comparisons between the exposed methods with the proposed algorithm are discussed and illustrated","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Structural Equation Modeling (SEM) is a statistical technique that assesses a hypothesized causal model byshowing whether or not, it fits the available data. One of the major steps in SEM is the computation of the covariance matrix implied by the specified model. This matrix is crucial in estimating the parameters, testing the validity of the model and, make useful interpretations. In the present paper, two methods used for this purpose are presented: the J¨oreskog’s formula and the finite iterative method. These methods are characterized by the manner of the computation and based on some apriori assumptions. To make the computation more simplistic and the assumptions less restrictive, a new algorithm for the computation of the implied covariance matrix is introduced. It consists of a modification of the finite iterative method. An illustrative example of the proposed method is presented. Furthermore, theoretical and numerical comparisons between the exposed methods with the proposed algorithm are discussed and illustrated
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用有限迭代法计算隐变量结构递推模型隐含协方差矩阵的改进算法
结构方程建模(SEM)是一种统计技术,通过显示是否符合现有数据来评估假设的因果模型。SEM的主要步骤之一是计算指定模型所隐含的协方差矩阵。这个矩阵在估计参数、测试模型的有效性和做出有用的解释方面是至关重要的。在本文中,提出了用于此目的的两种方法:J¨oreskog公式和有限迭代法。这些方法的特点是计算方式和基于一些先验假设。为了使计算更简单,假设约束更少,引入了一种计算隐含协方差矩阵的新算法。它是对有限迭代法的一种改进。最后给出了该方法的一个实例。此外,本文还讨论和说明了已暴露方法与所提出算法之间的理论和数值比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution A Berry-Esseen Bound for Nonlinear Statistics with Bounded Differences The Weibull Distribution: Reliability Characterization Based on Linear and Circular Consecutive Systems Infinity Substitute in Finding Exact Minimum of Total Weighted Tardiness in Tight-Tardy Progressive 1-machine Scheduling by Idling-free Preemptions Testing the Validity of Lindley Model Based on Informational Energy with Application to Real Medical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1