{"title":"Structural optimisation: biomechanics of the femur","authors":"A. Phillips","doi":"10.1680/eacm.10.00032","DOIUrl":null,"url":null,"abstract":"A preliminary iterative three-dimensional meso-scale structural model of the femur was developed, in which bar and shell elements were used to represent trabecular and cortical bone respectively. The cross-sectional areas of the bar elements and the thickness values of the shell elements were adjusted over successive iterations of the model based on a target strain stimulus, resulting in an optimised construct. The predicted trabecular architecture, and cortical thickness distribution showed good agreement with clinical observations, based on the application of a single leg stance load case during gait. The benefit of using a meso-scale structural approach in comparison to micro- or macro-scale continuum approaches to predictive bone modelling was achievement of the symbiotic goals of computational efficiency and structural description of the femur.","PeriodicalId":8462,"journal":{"name":"arXiv: Medical Physics","volume":"29 1","pages":"147-154"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/eacm.10.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
A preliminary iterative three-dimensional meso-scale structural model of the femur was developed, in which bar and shell elements were used to represent trabecular and cortical bone respectively. The cross-sectional areas of the bar elements and the thickness values of the shell elements were adjusted over successive iterations of the model based on a target strain stimulus, resulting in an optimised construct. The predicted trabecular architecture, and cortical thickness distribution showed good agreement with clinical observations, based on the application of a single leg stance load case during gait. The benefit of using a meso-scale structural approach in comparison to micro- or macro-scale continuum approaches to predictive bone modelling was achievement of the symbiotic goals of computational efficiency and structural description of the femur.