{"title":"Thermodynamic analysis of a beer engine","authors":"Frederick W. Call","doi":"10.1016/S1164-0235(02)00059-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper shows how the heat reclaimed from the exhaust gas of a gas turbine engine can be used to convert dilute ethyl alcohol (“beer”) to a fuel that can used to power the engine. Ordinarily, there is not enough heat available to distil the weak liquor to sufficient amounts of a strong product (>90%), due to high exergy destruction. In this design, a combination of destructive distillation and ordinary distillation is used, the wet product then being sent to a reformer for an endothermic shift reaction. The high temperature gas is now ready to burn in a gas turbine engine (or high temperature fuel cell). Water in the low temperature stack gas can be reclaimed in a cooling tower, if desired, so as to have no net loss of water for the system. The exergetic (Second Law) efficiency for power production is nearly 50%.</p></div>","PeriodicalId":100518,"journal":{"name":"Exergy, An International Journal","volume":"2 3","pages":"Pages 147-151"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1164-0235(02)00059-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exergy, An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164023502000596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper shows how the heat reclaimed from the exhaust gas of a gas turbine engine can be used to convert dilute ethyl alcohol (“beer”) to a fuel that can used to power the engine. Ordinarily, there is not enough heat available to distil the weak liquor to sufficient amounts of a strong product (>90%), due to high exergy destruction. In this design, a combination of destructive distillation and ordinary distillation is used, the wet product then being sent to a reformer for an endothermic shift reaction. The high temperature gas is now ready to burn in a gas turbine engine (or high temperature fuel cell). Water in the low temperature stack gas can be reclaimed in a cooling tower, if desired, so as to have no net loss of water for the system. The exergetic (Second Law) efficiency for power production is nearly 50%.