Design and application of a distributed generation hosting capacity algorithm

IF 0.6 4区 工程技术 Q4 ENERGY & FUELS Journal of Energy in Southern Africa Pub Date : 2021-01-01 DOI:10.17159/2413-3051/2021/v32i3a10364
M. A. Sam, D. Oyedokun, K. O. Akpeji
{"title":"Design and application of a distributed generation hosting capacity algorithm","authors":"M. A. Sam, D. Oyedokun, K. O. Akpeji","doi":"10.17159/2413-3051/2021/v32i3a10364","DOIUrl":null,"url":null,"abstract":"Distribution networks in Southern Africa and elsewhere are witnessing an unprecedented growth of consumer-side distributed generation (DG) courtesy of governmental interventions to maximise the utilisation of renewable energy resources through low-carbon grid-edge technologies. To deal with the increasing adoption of consumer-side DG, distribution network operators need to conduct technical studies to foster an understanding of the benefits and impacts of DG and the hosting capacity (HC) of existing distribution networks. This will aid the implementation of measures to manage grid exports. Using a distribution network in Namibia as a case study, this paper presents an algorithm for assessing the HC of consumer-side DG in existing distribution networks that are situated in areas anticipating high and uniform uptake of DG. The algorithm is a hybrid of deterministic and probabilistic methods. The uniqueness of the algorithm is the concept of calculating monthly HC. The algorithm was tested on a real existing residential distribution network and the results confirmed that HC varies monthly. However, the practical implementation of monthly HC requires upgrades to existing inverter technology, which currently contains a single export limit functionality. This opens the possibility to drive innovation in the inverter technology to develop a date-based multiple export limit functionality.","PeriodicalId":15666,"journal":{"name":"Journal of Energy in Southern Africa","volume":"35 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy in Southern Africa","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17159/2413-3051/2021/v32i3a10364","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Distribution networks in Southern Africa and elsewhere are witnessing an unprecedented growth of consumer-side distributed generation (DG) courtesy of governmental interventions to maximise the utilisation of renewable energy resources through low-carbon grid-edge technologies. To deal with the increasing adoption of consumer-side DG, distribution network operators need to conduct technical studies to foster an understanding of the benefits and impacts of DG and the hosting capacity (HC) of existing distribution networks. This will aid the implementation of measures to manage grid exports. Using a distribution network in Namibia as a case study, this paper presents an algorithm for assessing the HC of consumer-side DG in existing distribution networks that are situated in areas anticipating high and uniform uptake of DG. The algorithm is a hybrid of deterministic and probabilistic methods. The uniqueness of the algorithm is the concept of calculating monthly HC. The algorithm was tested on a real existing residential distribution network and the results confirmed that HC varies monthly. However, the practical implementation of monthly HC requires upgrades to existing inverter technology, which currently contains a single export limit functionality. This opens the possibility to drive innovation in the inverter technology to develop a date-based multiple export limit functionality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式发电主机容量算法的设计与应用
由于政府干预,通过低碳电网边缘技术最大限度地利用可再生能源,南部非洲和其他地区的配电网正见证着消费者端分布式发电(DG)的空前增长。为了应付越来越多采用消费者端自动发电,配电网营办商需要进行技术研究,以加深对自动发电的好处和影响,以及现有配电网的承载能力的了解。这将有助于实施管理网格导出的措施。以纳米比亚的一个配电网为例,本文提出了一种算法,用于评估现有配电网中消费者侧DG的HC,这些配电网位于预期DG高且均匀吸收的地区。该算法是确定性和概率方法的混合。该算法的唯一性在于计算月HC的概念。该算法在一个实际的现有住宅配电网上进行了测试,结果证实了HC是逐月变化的。然而,每月HC的实际实施需要升级现有的逆变器技术,该技术目前包含单一的出口限制功能。这开启了推动变频器技术创新以开发基于日期的多重出口限制功能的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
16
审稿时长
6 months
期刊介绍: The journal has a regional focus on southern Africa. Manuscripts that are accepted for consideration to publish in the journal must address energy issues in southern Africa or have a clear component relevant to southern Africa, including research that was set-up or designed in the region. The southern African region is considered to be constituted by the following fifteen (15) countries: Angola, Botswana, Democratic Republic of Congo, Lesotho, Malawi, Madagascar, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia and Zimbabwe. Within this broad field of energy research, topics of particular interest include energy efficiency, modelling, renewable energy, poverty, sustainable development, climate change mitigation, energy security, energy policy, energy governance, markets, technology and innovation.
期刊最新文献
Modelling NO2 emissions from Eskom’s coal fired power stations using Generalised Linear Models Trend analysis and inter-annual variability in wind speed in South Africa Commercialization of green hydrogen production from kraal manure in the Eastern Cape, South Africa: A review Investigation of Wind Data Resolution for Small Wind Turbine Performance Study Socio-economic analysis of solar photovoltaic-based mini-grids in rural communities: A Ugandan case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1