Visual Odometry using Convolutional Neural Networks

Alex Graves, Steffen Lim, T. Fagan, K. McFall
{"title":"Visual Odometry using Convolutional Neural Networks","authors":"Alex Graves, Steffen Lim, T. Fagan, K. McFall","doi":"10.32727/25.2019.25","DOIUrl":null,"url":null,"abstract":"Visual odometry is the process of tracking an agent’s motion over time using a visual sensor. The visual odometry problem has only been recently solved using traditional, non-machine-learning techniques. Despite the success of neural networks at many related problems such as object recognition, feature detection, and optical flow, visual odometry still has not been solved with a deep learning technique. This paper attempts to implement several Convolutional Neural Networks to solve the visual odometry problem and compare slight variations in data preprocessing. The work presented is a step toward reaching a legitimate neural network solution.","PeriodicalId":22986,"journal":{"name":"The Journal of Undergraduate Research","volume":"59 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Undergraduate Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32727/25.2019.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Visual odometry is the process of tracking an agent’s motion over time using a visual sensor. The visual odometry problem has only been recently solved using traditional, non-machine-learning techniques. Despite the success of neural networks at many related problems such as object recognition, feature detection, and optical flow, visual odometry still has not been solved with a deep learning technique. This paper attempts to implement several Convolutional Neural Networks to solve the visual odometry problem and compare slight variations in data preprocessing. The work presented is a step toward reaching a legitimate neural network solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络的视觉里程计
视觉里程计是使用视觉传感器跟踪代理随时间的运动的过程。视觉里程计问题直到最近才通过传统的非机器学习技术得到解决。尽管神经网络在许多相关问题上取得了成功,如物体识别、特征检测和光流,但视觉里程计仍然没有用深度学习技术来解决。本文试图实现几个卷积神经网络来解决视觉里程计问题,并比较数据预处理的细微变化。提出的工作是朝着实现合法的神经网络解决方案迈出的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Zombie ant graveyard dynamics in Gunung Mulu National Park Incorporating Sustainability into the Academic Institution Constructivism over Determinism Public perceptions on using Virtual Reality and Mobile Apps in Anxiety treatment Reflections of Reinvention in Postgraduate Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1